Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задачи вязкою течения при внешнем обтекании жидкостей

Существенный интерес представляют приложения теории свободного взаимодействия к течениям жидкости. В работах [25 —291 эта теория была применена к исследованию течения вблизи кормовой части пластины и профиля. В работах [27, 28] рассматривалось симметричное обтекание пластины. Как и для сверхзвуковых течений вблизи задней кромки, оказалось необходимым рассматривать три области узкий слой вязкого течения толщиной невязкое завихренное течение в области той же толщины, что и невозмущенный пограничный слой на пластине, и слабо возмущенный внешний потенциальный поток. Решение вверху по течению сращивалось с решением Блазиуса, а внизу по течению — с известным решением задачи для ламинарного следа [29].  [c.248]


Как уже указывалось, при обтекании тел газом или жидкостью влияние трения проявляется в некоторой малой окрестности тела, называемой пограничным слоем, в которой продольная скорость потока изменяется от нулевого значения на теле до скорости, равной скорости внешнего потока. Аналогично вязкому слою, можно ввести понятие температурного (теплового) слоя, в котором температура газа изменяется от температуры поверхности обтекаемого тела до температуры внешнего потока (см. рис. 124). Таким образом, для решения задачи о течении в пограничном слое следует рассмотреть также конвективную теплопередачу (вынужденная конвекция), воспользовавшись уравнением энергии и соответствующими граничными условиями.  [c.518]

Следует, однако, иметь в виду, что течений жидкости, строго отвечающих условиям потенциальности, в природе и технике не встречается. Представление о безвихревом характере движения является идеализацией, которая лишь с большей или меньшей степенью достоверности воспроизводит отдельные классы реальных течений. И тем не менее эта идеализация имеет важнейшее не только теоретическое, но и прикладное значение. Оно обусловлено тем, что вязкость жидкости, являющаяся первопричиной (для несжимаемой жидкости единственной) возникновения вихрей, проявляется, как правило, в ограниченных областях вблизи твердых поверхностей или в относительно узкой полосе за обтекаемым телом. В остальной части потока его завихренность может оказаться настолько малой, что поток можно считать потенциальным. Разумеется, встречается немало случаев, когда поток является сплошь завихренным и ни в какой его части влияние вязкости нельзя считать малосущественным. Такой поток может быть рассчитан только методами теории вязкой жидкости. Однако в тех случаях, когда допущение о потенциальности обосновано, его использование может значительно облегчить решение основной задачи гидродинамики. К числу таких случаев относится, например практически важная задача об обтекании твердых тел безграничным потоком (так называемая внешняя задача гидроаэродинамики).  [c.225]

В технике большое значение имеет теплообмен при больших числах Re. В связи с этим в гидродинамике и теплообмене вязкой жидкости важное место занимает теория пограничного слоя. В настоящее время методы пограничного слоя хорошо разработаны для несжимаемой жидкости и сжимаемого газа. Получены решения ряда задач о теплообмене и гидравлическом сопротивлении при ламинарном и турбулентном течении жидкости в трубах и соплах, задач о распределении скорости и температуры в неизотермических струях и ряда других задач. Наибольшее (распространение методы пограничного слоя получили при решении задач теплообмена и сопротивления при внешнем (безотрывном) обтекании тел.  [c.11]


В реальной вязкой жидкости парадокс Даламбера не имеет места. Для случая очень малых рейнольдсовых чисел в этом можно было убедиться на примере задачи Стокса об обтекании шара. Для течений с большими рейнольдсовыми числами, при наличии пограничного слоя, вопрос становится менее ясным. Основное свойство пограничного слоя передавать без искажений на стенку крыла давления внешнего, безвихревого потока может навести на мысль, что парадокс Даламбера для движений с пограничным слоем сохраняет свою силу. Если бы распределение давлений во внешнем потоке в точности совпадало с тем, которое получается при безотрывном безвихревом обтекании крыла идеальной жидкостью, то сопротивление давлений, действительно, равнялось бы нулю. Однако на самом деле наблюдается следующее явление. Линии тока, вследствие подтормаживающего влияния стенки, оттесняются от поверхности крыла. Такое искажение картины течения приводит к нарушению идеального распределения давлений по поверхности крыла.  [c.639]

Обтекание вязкой жидкостью тел цилиндрической формы рассчитывалось в ряде работ, большинство из которых имело скорее методический или поисковый характер из-за трудностей достаточно точной аппроксимации уравнений Навье — Стокса и граничных условий для внешней задачи обтекания. В некоторых работах, например [5—7], были получены стационарные отрывные области за телами как при малых числах Рейнольдса, так и при довольно значительных (до нескольких сотен), хотя известно из экспериментов, что при числах Рейнольдса, больших —40, течение за телом становится неустойчивым и возникают вихревые дорожки Кармана. Этот факт некоторые исследователи связывают с различной природой физической и математической неустойчивости течения в отрывной области, однако строгого и убедительного подтверждения такого мнения еш,е нет. Численные решения подобного рода при достаточно высоких числах Рейнольдса можно рассматривать как численные эксперименты, полезные для понимания свойств решений уравнений Навье — Стокса.  [c.236]

Решение задачи ищется в виде асимптотических разложений по малому параметру е. Главный член разложения вне капли определяется решением задачи об обтекании твердой сферы. Главный член разложения внутри капли соответствует течению вязкой жидкости, которое вызывается действием касательного напряжения на межфазной поверхности (касательное напряжение зависит только от внешнего числа Рейнольдса Ке и берется из известных численных решений [226, 288]).  [c.58]

Задачи вязкого течения жидкостей и газов в пограничном слое при внешнем обтекании тел. Этот класс объединяет все задачи ламинарного и турбулентного, стационарного и нестационарного режимов течения однородных и миогокомионентных газов и жидкостей при свободном и вынужденном обтекании плоских и пространственных тел с произвольным распределением скоростей в потенциальном или завихренном потоке при произвольных условиях на границах и на поверхностях разрывов, Задачи данного класса описываются системой дифференциальных уравнений параболического типа, содержащей по крайней мере одну одностороннюю пространственную или временную координату, вдоль которой протекающий процесс зависит только от условий на одной из границ рассматриваемой области. Например, для задач теплообмена при неустановившемся ламинарном или турбулентном двумерном движении однородного газа система, состоящая из уравнений неразрывности движения и энергии, имеет вид  [c.184]

Картина обтекания цилиндра реальной (вязкой) жидкостью резко отличается от описанной выше. При очень малых числах Рейнольдса в набегающем потоке (Re = W d/v, d —диаметр цилиндра) разница между картинами обтекания невязкой и вязкой жидкости очень мала. Но она будет проявляться все больше по мере увеличения чйсла Рейнольдса. При значениях чисел Рейнольдса, характерных для практических задач, картину обтекания можно представить следующим образом. На поверхности цилиндра в этих условиях образуется пограничный слой (рис. 10.5). В этой области в результате диссипации элементарный объем жидкости частично теряет свою кинетическую энергию и оставшегося запаса не хватает для того, чтобы достичь точки 5, и он останавливается. Во внешнем потенциальном течении давление восстанавливается по закону  [c.192]


Уравнения трехмерного пограничного слоя рассмотрены в [28, 29] при описании вязкой пристеночной подобласти течения в круглой трубе с несимметрично возмущенной формой стенки. Что касается внешних течений, то обобщение трехпалубной теории свободного взаимодействия на случай обтекания вязким потоком с двумерным невозмущенным пограничным слоем трехмерного препятствия содержится в [32], где соответствующая краевая задача для несжимаемой жидкости решена в линеаризованном варианте. Предположение о слабых возмущениях использовалось также в [33] для иной геометрии трехмерного течения. Условие взаимодействия в виде двойного интеграла Коши-Гильберта, связывающее неизвестное давление и функщ1Ю смещения линий тока, приобретает сравнительно простой вид в спектральном пространстве, поэтому вычислительная процедура, основанная на применении псевдоспектрального подхода, оказалась эффективной при исследовании нелинейного режима обтекания трехмерной неровности [34].  [c.5]

Решение задачи об обтекании полубесконечной тонкой пластины потоком вязкой жидкости в рамках теории пограничного слоя хорошо известно и описывается решением Блазиуса. Если на поверхность пластины поместить препятствие, а это можно сделать различными способами, то течение становится трехмерным. Внешнее течение, которое необходимо для расчета пограничного слоя, в случае цилиндрического или осесимметрического препятствия находится из теории потенциального плоского или осесимхметрического идеального течения, поскольку бесконечно тонкая пластина возму-ш,ения в идеальное течение не вносит. Например, в случае бесциркуляционного обтекания цилиндра, пересекающего плоскость, потенциал течения известен Ф = сх ) + / x +z )). Составляющие скорости в системе координат х, г, связанной с центром цилиндра, имеют вид  [c.177]


Теплоэнергетика и теплотехника Общие вопросы (1987) -- [ c.188 ]



ПОИСК



Жидкость вязкая

Задача внешняя

Задача жидкости

Задача о течении

Задача обтекания

Задачи вязкою течения при внешнем обтекании

Обтекание

Обтекание тел внешнее

Обтекание тел жидкостью

Течение в жидкости

Течение вязких жидкостей

Течение вязкой жидкости



© 2025 Mash-xxl.info Реклама на сайте