Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Малые движения консервативной механической системы

Малые движения консервативной механической системы  [c.308]

МАЛЫЕ ДВИЖЕНИЯ КОНСЕРВАТИВНОЙ МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.309]

Допустим, что консервативная механическая система, состоящая из п материальных точек и имеющая одну степень свободы, находится в некотором положении в устойчивом равновесии. Исследуем, какое движение будет совершать эта система, если ее вывести из равновесия малым возмущением. Условимся опять определять положение системы обобщенной координатой q, выбранной так, что при равновесии равновесие устойчиво, а возмущения малы, то координата q и обобщенная скорость q будут во все время движения тоже оставаться величинами малыми. Для составления дифференциального уравнения движения системы воспользуемся уравнением Лагранжа, которое, если выразить обобщенную силу Q через потенциальную энергию системы,П [(см. 143, формулы (115)], примет вид  [c.389]


При исследовании устойчивости механических систем, описываемых каноническими уравнениями движения (в частности с гамильтонианом, периоди-134 чески зависящим от времени), существенную роль играет орбитальная устойчивость Применение предложенного А. Н. Колмогоровым метода теории возмущений позволило получить ряд результатов относительно устойчивости и неустойчивости консервативных систем, близких к интегрируемым для бесконечного промежутка времени. При этом выяснилось существенное отличие систем с числом степеней свободы ге 3 от систем с одной или двумя степенями свободы. Так называемые условно-периодические движения, соответствующие интегрируемым системам с п степенями свободы, образуют п-мерные инвариантные многообразия типа тора. Методом Колмогорова доказывается грубость таких торов — они мало видоизменяются, т. е. устойчивы при достаточно малых возмущениях. При и = 1 или п = 2 в фазовом пространстве 2п измерений устойчивые торы лежат в многообразиях 2п — 1 измерений, которые выделяются требованием постоянства энергии, как соосные торы (и = 2) или концентрические кривые п = 1). Поэтому не только траектории, первоначально лежащие на инвариантных торах, но и траектории, находящиеся между ними, остаются между этими торами. В этом случае существование торов гарантирует устойчивость системы. При га >> 3 гг-мерные торы вложены в пространство 2п — 1 измерений, которое они делить уже не могут, т. е. щели между торами сообщаются друг с другом. Поэтому траектория, начинающаяся между торами, несмотря на их устойчивость по отношению к возмущениям, может, извиваясь между торами, уйти на любое расстояние от них, т,. е. оказаться неустойчивой. Примеры, иллюстрирующие эти общие положения, приведены в докладе  [c.134]

Рассмотрим механическую систему, совершающую малые движения около положения равновесия. Пусть положение механической системы определяется главными координатами Хи Х2,..., лг . Предположим, что кроме консервативных сил на систему действуют еще диссипативные и гироскопические силы. Пусть диссипативная функция в главных координатах.  [c.590]

Позже (1960) Четаев подчеркивал, что в строгой установившейся теории реальные возмущающие силы не должны делать неустойчивыми хорошо наблюдаемые невозмущенные устойчивые равновесия или движения механической системы. В частности, Четаев пришел к заключению, что малые диссипативные силы с полной диссипацией, всегда реально существующие в нашей природе, являются гарантийным силовым барьером, делающим пренебрежимыми влияния нелинейных возмущающих сил на движения консервативных систем.  [c.15]


СИСТЕМЫ А. М. ЛЯПУНОВА ). В системах Ляпунова отсутствует малый параметр, на который в квазилинейных системах умножены нелинейные члены. Большей частью это консервативные системы, обладающие в качестве первого интеграла интегралом сохранения полной механической энергии. При известных условиях такие системы допускают периодическое решение, разлагающееся в ряды по степеням начального значения одной из координат в предположении, что это значение достаточно мало. Вопрос о существовании периодического решения в таких системах был связан у Л. М. Ляпунова с вопросом об устойчивости невозмущенного движения системы, определяемого нулевыми значениями координат в одном из критических случаев , именно, когда характеристическое уравнение имеет пару чисто мнимых корней. Устанавливая условия периодичности возмущенного движения системы, можно, следуя Л. М. Ляпунову, получить также в этих условиях условия устойчивости невозмущенного движения в этом довольно часто встречающемся критическом случае. Общая теория нелинейных систем Ляпунова вместе с обобщением этой теории на класс систем, близких к системам Ляпунова, развита И. Г. Малкиным. Из монографии И. Г. Малкина [31] мы и заимствуем изложение теоремы Ляпунова о существовании и форме периодических решений рассматриваемых систем, приводимой без доказательства.  [c.545]

Эта теорема позволяет сделать вывод, что для устойчивого невозмущенного движения консервативной голономной системы в соответствующих переменных бесконечно малые возмущенные движения системы аналогичны движениям вблизи устойчивого положения равновесия консервативной голономной системы. Тем самым выявляется колебательный, волновой характер движения механических систем вблизи их устойчивых ведущих движений. Отсюда следует, что задача Коши о развитии открытой Гамильтоном аналогии между динамикой консервативных механических систем и оптикой Гюйгенса тесно связана с некоторой задачей об устойчивости движения. Если существует аналогия между динамикой и математической теорией света Коши, то эту аналогию следует искать в возмущенных движениях вблизи устойчивых движений гол ономных консервативных систем.  [c.16]

В качестве доказательства ограничимся следующими рассуждениями. Для консервативной системы имеет место закон сохранения механической энергии, т. е. T+n= onst, где Т — кинетическая, а П — потенциальная энергия системы. Поэтому, если в положении равновесия П=Пп11п, то когда система после малого возмущения придет в движение и будет удаляться от положения равновесия, значение П должно возрастать и, следовательно, Т будет убывать. Однако при возрастании П не может стать больше некоторой величины Ili=nn,jn+An, которая получится, когда Т обратится в нуль. Учтя это, можно начальные возмущения, а с ними и значение ДП сделать столь малыми, что когда у системы П=Пт +ДП ее отклонение от равновесного положения будет меньше любого сколь угодно малого заданного. Отсюда и следует, что равновесное положение является устойчивым.  [c.387]

Предположим, что существует инерциальная система S, в которой ско-росги всех частиц малы но сравнению со скоростью света, так что в S можно с хорошим приближением пользоваться нерелятивистской механикой Ньютона. Пренебрегая типично атомными явлениями, обусловленными существованием планковского кванта действия, мы можем в качестве такой механической системы рассматривать атомное ядро, поскольку элементарные частицы, из которых построены атомные ядра, нуклоны, настолько тяжелы, что их скорости в общем случае можно считать малыми по сравнению с с. Данное предположение означает, что собственные времена отдельных частиц в 2 практически совпадают и равны времени / в системе S и, кроме того, что силы связи между частицами мгновенны и удовлетворяют третьему закону Ньютона. Если эти силы консервативные, то в системе S они определяются как градиенты потенциальной функции V, зависящей от расстояния между частицами. В соответствии с механикой Ньютона при движении частиц сумма полной кинетической и потенциальной энергии не изменяется со временем, т. е.  [c.65]


МЕХАНИЧЕСКОЕ РАВНОВЕСИЕ— состояние покоя или прямолинейноравномерного движения системы материальных точек (тела, звена, механизма). М. может 1ть устойчивым, неустойчивым и безразличным. При устойчивом равновесии достаточно малые отклонения системы (тела) от положения равновесия вызывают силы, стремящиеся вернуть ее в состояние равновесия. Условием устойчивого равновесия для консервативной системы (где механическая энергйя не превращается в тепловую) является минимум потенциальной энергии данной системы (теорема Лагранжа—Дирихле). Если на систему с идеальными связями действуют только силы тяжести, то устойчивым будет положение, при котором центр тяжести занимает самое низкое положение (принциТП Торичелли).  [c.178]


Смотреть страницы где упоминается термин Малые движения консервативной механической системы : [c.99]   
Смотреть главы в:

Основы классической механики  -> Малые движения консервативной механической системы



ПОИСК



Движение консервативное

Движение механическое

Движение системы

Консервативная система

Консервативность системы

Консервативные

Механические системы механических систем

Система малых ЭВМ

Система механическая

Системы механические консервативные



© 2025 Mash-xxl.info Реклама на сайте