Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловая эффективность теплообменных аппаратов

После создания тепловых двигателей теория теплоты стала развиваться вначале как наука о превращении теплоты в механическую энергию, т. е. в форме термодинамики. Но термодинамика выясняла только теоретические возможности рабочего процесса двигателя, тогда как совершенство реального двигателя зависит от ряда физико-химических процессов, среди которых одним из главных является теплообмен. Таким образом, теория теплообмена стала совершенно необходимой для правильного понимания и совершенствования рабочего процесса тепловых двигателей. Стремление к наиболее эффективному использованию теплоты и желание увеличить надежность работы двигателя привели к появлению в силовых установках ряда дополнительных теплообменных аппаратов (регенеративные подогреватели, экономайзеры, воздушные радиаторы и т. п.).  [c.242]


При проектировании теплообменного аппарата конструктор выбирает форму рабочей поверхности, схему движения теплоносителей и их скорости, конструктивные параметры (диаметр трубок, расстояние между ними, расстояние между пластинами). При этом выполняется тепловой и гидравлический расчеты нескольких вариантов аппарата с тем, чтобы выбрать из них наиболее эффективный.  [c.463]

Используя полученные графики и другие результаты обработки опыта, определить а) как влияет схема включения теплообменного аппарата на величину среднего температурного напора б) как влияет изменение расхода теплоносителя на значения коэффициента теплопередачи, температурного напора, тепловой эффективности  [c.163]

Особое место среди теплообменных аппаратов разных типов занимают тепловые трубы. Тепловой трубой называется испарительно-конденсационное устройство, представляющее собой закрытую камеру, внутренняя полость которой выложена слоем капиллярно-пористого материала (фитилем). Один конец тепловой трубы служит зоной подвода, а противоположный — зоной отвода теплоты. За счет подвода теплоты жидкость, насыщающая фитиль, испаряется. Пар под действием возникшей разности давлений перемещается к зоне конденсации и конденсируется, отдавая теплоту парообразования. Конденсат под действием капиллярных сил возвращается по фитилю в испарительную зону. Происходит непрерывный перенос теплоты парообразования от зоны нагрева к зоне охлаждения (конденсации). Тепловые трубы не требуют затрат энергии на перекачку теплоносителя, они работают при малом температурном напоре, поэтому обладают большой эффективной теплопроводностью, превышающей на несколько порядков теплопроводность серебра или меди — наиболее теплопроводных материалов из всех известных. Для тепловых труб используется большое разнообразие теплоносителей в зависимости от интервала рабочих температур.  [c.219]

По расходу охладителя на единицу защищаемой поверхности пористое охлаждение более эффективно, чем рассмотренные ранее способы тепловой защиты. Но использование пористого охлаждения требует изготовления пористых стенок по довольно сложной технологии. Кроме того, при эксплуатации такой системы необходимо принимать меры для очистки охладителя, чтобы избежать засорения пор. В настоящее время пористое охлаждение применяется в ракетных двигателях на водородном топливе, авиационных двигателях, электродуговых подогревателях газа, МГД-установках, теплообменных аппаратах и т. д.  [c.18]


Учитывая эти качества поверхности и широкие возможности ее применения для работы как при обычных, так и при повышенных температурах, в лаборатории теплообменных аппаратов отдела высокофорсированного теплообмена Института технической теплофизики детально исследовали пучки труб со спирально-приварным оребрением. Цель этих исследований заключалась в определении данных, необходимых для тепловых расчетов теплообменников на базе таких труб. Не менее важной и интересной задачей исследования явилось выяснение влияния на эффективность работы поверхности как компоновки ее в трубные пучки, так и геометрии самого оребрения. Под последним следует понимать размеры оребрения (высоту и толщину ребра, число ребер на единицу длины трубы) и форму ребра (степень его гофрировки в процессе навивки на трубу), изменяющуюся в зависимости от технологии изготовления сребренных труб.  [c.125]

Корпус-перегородка в теплообменной аппаратуре. Тепловая эффективность кожухотрубчатых теплообменных аппаратов (КТА) в значительной степени зависит от точности посадки корпуса-перегородки. Не все перетечки и байпасные потоки оказывают одинаковое влияние на характеристики теплообменника, они проявляются по-разному в зависимости от геометрических параметров корпуса. Влияние байпасного потока через зазор между кромкой перегородки и стенкой корпуса наиболее существенно, и на практике немного можно сделать для компенсации этого влияния. В этой связи проблема точности соединения корпус-перегородка принимает важное значение. Основной скачек в снижении тепловой эффективности теплообменника происходит, когда зазор проходит диапазон от 3 до 5 мм. Это свидетельствует о качественном изменении ситуации, а именно появлении перетечек и усилении эффекта байпаса, которые при дальнейшем увеличении зазора продолжают нарастать (табл. 7.1).  [c.324]

Использование упрощенного зонального метода, описанного в гл. 4, ограничено из-за предположения о постоянстве плотности потока эффективного излучения по поверхности каждой зоны. В то же время, если расстояние между зонами мало по сравнению с их размерами, то величина плотности потока эффективного излучения будет изменяться по поверхности каждой зоны. Если этого не учитывать, то расчет теплообмена излучением может быть ошибочным. Во многих прикладных задачах точный расчет теплообмена излучением играет важную роль. К их числу можно отнести теплообмен излучением, связанный с обеспечением теплового режима космических аппаратов отвод тепла от энергетических установок космических кораблей излучение поверхностей, которые нельзя считать гладкими из-за наличия углублений, отверстий, канавок и т. п. разработку моделей черных тел. Поэтому в данной главе предположение  [c.195]

Для теплоиспользующих установок других типов (выпарные аппараты, варочные котлы, ректификационные установки и т. д.) в результате испытаний также составляются материальный и тепловой балансы, которые позволяют судить об эффективности работы аппарата. При испытании следует контролировать работу не только теплообменного аппарата, но и конденсатоотводчиков, конденсаторов, насосов и другого вспомогательного оборудования.  [c.277]

Для повышения экономичности ГТУ используются теплообменные аппараты — регенераторы и холодильники. Применяемые в настоящее время теплообменные аппараты характеризуются недостаточно высокими тепловыми показателями, чрезвычайно громоздки. Необходимо добиться большей эффективности теплообмена между охлаждаемым отработавшим в турбине газом и нагреваемым в регенераторе воздухом, поступающим из него в камеру сгорания.  [c.399]

К сожалению, приведенные выше методы оценки эффективности не учитывают напрямую три важнейших параметра теплообменного аппарата плош,адь поверхности теплообмена (или, как показано в [193], объем аппарата), тепловую мощность и затраты энергии на прокачку теплоносителей. Не учитываются также принцип конструкции аппарата, определяющие размеры и геометрические характеристики поверхности теплообмена. Поэтому эти способы могут использоваться в настоящее время только для качественной оценки эффективности метода интенсификации. Тем не менее, они сыграли значительную роль на определенном этапе исследований процессов интенсификации теплообмена.  [c.514]


Ко второму типу можно отнести теплообменные аппараты, выполненные из пластинчато-оребренной поверхности [45], [49], [58]. Удельная поверхность такой аппаратуры достигает значения 800— 1600 м 1м и более. В этом типе распространена конструкция, набираемая из плоских листов, между которыми размещается оребрение в виде гофрированных листов. Форма этих гофров определяет вид канала, по которому движется теплоноситель. Каналы имеют обычно треугольную и прямоугольную форму сечения. Плоские и гофрированные листы соединяются совместно пайкой. Однако лучший тепловой контакт достигается в случае приварки корытообразных ребер к плоским листам на шовной контактной машине при этом образуются прямоугольной формы каналы. С целью интенсификации теплообмена путем уменьшения толщины пограничного слоя или его разрушения применяются волнистые ребра, короткие оо смещением ребра, разрезные ребра и др. Данные по теплообмену и сопротивлению, приведенные в работах [45] и [58], указывают на высокую эффективность пластинчато-оребренной поверхности теплообмена. Такая поверхность, однако, непригодна для теплообменников с резко отличающимися давлениями теплоносителей.  [c.24]

Результаты исследований показывают, что применение ускоренного движения пара в трубных пучках теплообменных аппаратов дает значительное увеличение эффективности их работы и дает возможность сокращения их металлоемкости и габаритов при заданной тепловой мощности.  [c.140]

Закон о теплоснабжении - важный инструмент решения проблем реформирования коммунальной энергетики 20 Энергоэффективная система регулирования отпуска тепла 22 Комплексный подход к проблеме повышения эффективности функционирования ЖКХ 24 Опыт применения систем дистанционного контроля в тепловых сетях бесканальной прокладки 32 Экспериментальные характеристики кожухотрубного теплообменного аппарата в условиях эксплуатации  [c.2]

В разработанной системе утилизации 12 применена схема последовательного соединения тепловых насосов по нагреваемому и охлаждаемому теплоносителям с противоточным их движением. Среднегодовой расчетный коэффициент комплексной эффективности (отношение эквивалентных количеств выработанных теплоты и холода к количеству электроэнергии, затраченной на привод ТНУ) разработанной системы составил 5,4. В качестве теплообменных аппаратов 8—<11 в тепловой схеме применены пластинчатые подогреватели типа Р.06, обеспечивающие наиболее эффективное использование располагаемого напора.  [c.210]

В настоящее время нет методики расчета протечек через зазоры, если не считать одного примера в работе [И]. Отсутствует также методика определения влияния протечек на теплообмен, тепловую мощность аппаратов, конечные температуры теплоносителей и гидродинамическое сопротивление. Важность этих вопросов при конструировании теплообменной аппаратуры очевидна, так как она позволит обоснованно выбирать величины зазоров и допусков для них с учетом как усложнения изготовления при малых зазорах, так и необходимости увеличения размеров аппаратов при наличии больших протечек. Вероятно эта методика явится также стимулом для разработки и осуществления эффективных способов и конструкций для уплотнения зазоров.  [c.222]

В первой части пособия излагаются основные понятия и законы термодинамики, термодинамические свойства рабочих тел, анализ термодинамических процессов и циклов. Рассматриваются циклы тепловых двигателей и холодильных машин, приводится эксерготический анализ эффективности тепломеханических систем. Во второй части описываются явления теплопроводности, конвективного теплообмена и теплового излучения, даются основы теплового расчета теплообменных аппаратов. Изложение математической теории теплообмена и теории подобия в начале второй части пособия позволило обеспечить единый подход к рассмотрению задач теплопроводности и конвективного теплообмена и избежать повторений.  [c.6]

Рассмотрены расчетные методы определения коэффициентов переноса (диффузии, тепло- и электропроводности, модуля упругости и др.) в неоднородных средах (композиционные, зернистые и волокнистые материалы, керамические и связанные материалы, нефте- водо- и газонасыщепные грунты, материалы с различными фазовыми состояними). Приведено сопоставление расчетных и экспериментальных данных применителыю к эффективным теплообменным аппаратам, тепловой изоляции, работающей при низкой и высокой температурах.  [c.248]

Представляют интерес результаты эксергетпческого анализа синтеза аммиака, приведенные в журнале Химическая промышленность (1982, № 5). Из теплового баланса ЭХТС следует, что в колонне синтеза аммиака, водоподогревателе и теплообменных аппаратах потери энергии близки нулю. Из эксергетического же анализа следует противоположный вывод — наибольшие потери эксергии оказываются в колонне синтеза (22,6% от всех потерь) они выше, чем в компрессоре (16%) и газовой турбине (20%), что объясняется большой необратимостью протекающей в колонне синтеза аммиака химической реакции. Общие потери в колонне синтеза аммиака, водоподогревателе и теплообменниках составляют почти половину всех эксергетических потерь ЭХТС. Потери эксергии в колонне синтеза аммиака можно значительно уменьшить за счет повышения температуры в одной из ее зон, так как это мероприятие позволило бы более эффективно использовать теплоту реакции и выдать на сторону пар более высоких параметров.  [c.322]

В книге предложены способы обобгцения опытных данных по нестационарному тепломассообмену в пучках витых труб при различных типах нестационарности резком и плавном изменении тепловой нагрузки при запуске и остановке аппарата и переходе с однрго режцма работы на другой режим, а также при изменении расхода теплоносителя. При этом использовались теории подобия и размерностей, на основании которых предложены критерии подобия и способы учета особенностей нестационарного процесса тепломассообмена в пучках витых труо. Определены критериальные зависимости для расчета эффективных коэффициентов диффузии и коэффициентов теплоотдачи и гидравлического сопротивления для стационарных и нестационарных условий работы, которые рекомендуется использовать при теплогидравлических расчетах теплообменных аппаратов. Рассмотрены методы расчета теплообменных аппаратов с витыми трубами с учетом межканального перемешивания, что позволяет наряду с усредненными определять и локальные параметры в рамках гомогенизированной постановки задачи. В книге анализируются и обобщаются теоретические и экспериментальные работы, выполненные как авторами, так и другими исследователями.  [c.5]


Выполненное обобщение опытных данных позволило предложить зависимость для расчета нестационарного эффективного коэффициента диффузии для режимов работы теплообменных аппаратов и устройств, связанных с уменьшением тепловой нагрузки до нуля, а также при переходе с одного режима работы на другой с меньшей тепловой мощностью. Эта зависимость может быть использована для замыкания системы дифференциальных уравнений, описывающих нестациот парный тепломассоперенос в пучках витых труб для рассмотренного типа нестационарности.  [c.174]

Расчет газоводяного теплообменника. Существует несколько способов представления характеристик теплообменных аппаратов без фазовых превращений теплоносителей. Одним из таких методов является P-NTU-метод, который удобен именно для машинных расчетов, так как позволяет избежать определения среднелогарифмической разности температур, что повышает надежность работы компьютерной программы расчета. Используя P-NTU- метод, можно определять параметры теплоносителей на выходе из каждого ряда секций (в идеальном случае принимается, что температурный режим обоих теплоносителей постоянен по всему ряду секций). Для этого вводятся вспомогательные параметры Р, R тл NTU. Тепловая эффективность Р представляет собой отношение измеренной температуры газового теплоносителя  [c.446]

Стремление создать опреснительные установки с высокой интенсивностью рабочего процесса, малым наки-пеобразоваиием, хорошими габаритными характеристиками привело к разработке принципиально нового процесса — дистилляции опресняемой воды в тонких пленках. В настоящее время в мировой практике наметилась тенденция к использованию испарительных аппаратов и других теплообменников пленочного типа для включения в тепловую схему установки. Это объясняется прежде всего тем, что работа теплообменного аппарата с тонкопленочным режимом течения нагреваемой жидкости эффективнее процессов, происходящих на поверхностях, погруженных в большой объем, и в трубах, полностью заполненных потоком жидкости, благодаря высокой интенсивности теплообмена в тонком слое нагрева-3-323 33  [c.33]

В [192] и других работах Г.А.Дрейцера описан метод сравнения поверхности теплообмена, названный методом эффективных параметров. Метод основан на использовании в качестве условия сравнения равенства эффективных чисел Рейнольдса, которые в свою очередь характеризуют параметры теплообменного аппарата тепловую мощность, расход и мощность на прокачку теплоносителя, теплофизические свойства и температурный напор. Метод позволяет проводить сравнение геометрически не подобных каналов при произвольной форме представления опытных данных.  [c.515]

Исследование нестационарных температурных полей теплоносителя в пучках витых труб с целью определения эффективных коэффициентов диффузии АГд при увеличении и уменьшении расхода теплоносителя первоначально было проведено с быстрым изменением расхода на 12%. В этом случае исследования имеют в большой степени методический характер, так как позволяют наметить пути дальнейшего изучения процесса нестационарного тепломассопереноса для рассматриваемого типа нестационарности, имеющего большое практическое значение при эксплуатгщии теплообменных устройств. Действительно, в процессе работы теплообменного оборудования возможны флюктуации расхода теплоносителя при пос-тоянной мощности тепловой нагрузки, а также перевод аппарата с одного режима работы по расходу теплоносителя на другой.  [c.174]

Теплообмен излучением играет важную роль в космической технике например, в космических аппаратах сбрасываемое тепло от энергетической установки, электронного оборудования и различных элементов аппарата переносится жидк им теплоносителем к космическим радиаторам, где оно путем теплопроводности передается к поверхности ребер, а затем путем теплового излучения отводится в открытый космос. Поскольку космические радиаторы, по-видимому, относятся к наиболее тяжелым элементам системы терморегулирования космического аппарата, следует выбрать наиболее эффективную геометрию ребер с точки зрения отвода тепла излучением, а также точно определить тепловые характеристики радиатора, чтобы минимизировать его вес. На фиг. 6.1 показаны типичные радиаторы космических ап паратов. В работах [1,2] рассматривается широкий круг связан ных с ними инженерных проблем. Основной механизм теплообмена в космическом радиаторе — совместное действие теплопроводности и излучения в прозрачной среде. Характеристики теплообмена для простых излучающих ребер исследовались до-, статочно широко [3—14]. Для геометрических форм ребра, представленных на фиг. 6.1, в, г, теплообменом излучением между поверхностью ребра и его основанием можно пренебречь, что значительно упрощает анализ. Однако для случаев, представленных на фиг. %Л,а,б,д, этот теплообмен необходимо учитывать, что усложняет проведение расчетов. Оптимизация веса ребра также существенна в других технических приложениях. Эта проблема рассматривалась рядом исследователей, определявших тепловые характеристики развитых излучающих поверхностей.  [c.231]

Другими словами, коэффициент энергетической эффективности Е определяет основное качество поверхности теплообмена — сколько передается теплоты при разности температур, равной 1 С, затратс1х энергии на движение рабочей среды 1Вт при обтекании 1 м площади поверхности теплообмена. Это обобщенный показатель энергоемкости теплового и гидродинамического процессов для аппарата данной конструкции или теплообменной поверхности.  [c.511]


Смотреть страницы где упоминается термин Тепловая эффективность теплообменных аппаратов : [c.8]    [c.377]   
Смотреть главы в:

Теплотехника  -> Тепловая эффективность теплообменных аппаратов



ПОИСК



Аппараты теплообменные

Теплообмениые аппараты



© 2025 Mash-xxl.info Реклама на сайте