Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Графическое изображение параметров

На рис. 0.1 представлено графическое изображение параметров формулы (0.1) для соединения с натягом. Здесь f(D) и f d) плотности  [c.11]

Графическое изображение параметров 133  [c.133]

ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ПАРАМЕТРОВ [43]  [c.133]

Фиг. 2. 40. Графическое изображение параметров. Фиг. 2. 40. <a href="/info/335264">Графическое изображение</a> параметров.

Групповые чертежи обычно разрабатывают на однотипные изделия в тех случаях, когда число изменяющихся параметров невелико и когда графическое изображение не изменяется или его небольшие изменения не усложняют понимания чертежа.  [c.299]

Типовые примеры графического изображения допусков, отклонений, номинальных и предельных размеров и других параметров точности отверстия и вала показаны на рис. 4.4, а. Эти схемы построены на основе изложенного принципа. Масштаб при построении таких схем выдержать нельзя, так как допуски на обработку деталей в сотни и тысячи раз меньше номинальных размеров. В примере 4.4 для О — 22 мм ТО = 21 мкм, что составляет менее 1/10000. Поэтому горизонтальные линии, определяющие предельные размеры 0 ,ах, Отш. и тах. проводят нэ ПРОИЗВОЛЬНЫХ расстояниях ОТ нижней ли-  [c.42]

Энтропию можно применять совместно с одним из основных параметров для графического изображения процессов. Удобнее всего энтропию сочетать с абсолютной температурой Т. Если энтропию s откладывать по оси абсцисс, а абсолютную температуру по оси ординат, то получим координатную систему Ts, т. е. Тх-диаграмму,  [c.84]

На сегодняшний день существуют вычислительные средства, работающие по оригинальной телевизионной схеме. Конструктор зашифровывает параметры разрабатываемого изделия при помощи символов и эту информацию вводит в специальную вычислительную машину с выходом на телевизионный экран, на котором создается его графическое изображение. Кроме того, так называемым световым пером конструктор может вносить изменения в чертеж непосредственно на экране. С помощью специальных органов управления можно достаточно плавно менять размеры всего изображения или его отдельных элементов, конструкцию линий и т. д., поворачивать все изображение в различные стороны, а также получать любое сечение изображаемого изделия, если позволяет это делать разработанное математическое обеспечение. Наличие дешифратора позволяет получать информацию о чертеже изделия в виде кода, которая вводится в специальные станки с программным управлением, для изготовления изделия без участия человека.  [c.3]

На компьютере могут быть созданы конструкторские документы (чертежи и схемы) как с использованием, например графических примитивов типа отрезка, окружности, полилинии и др., так и фрагментов ранее созданных конструктивных элементов графических изображений (ГИ) стандартных изделий, типовых и унифицированных конструкций, их частей и т.д. При этом модели вышеуказанных фрагментов могут быть параметрически заданными. С помощью задания различных значений параметров конструктор может изменить их размеры и геометрическую форму, обеспечивая многовариантность ГИ и соответственно чертежей и схем. При таком подходе к конструированию использование компьютерной графики не устраняет чертеж (рис. 20.1) как основу конструирования, компьютер используется как электронный кульман , облегчающий труд конструктора. Такой подход базируется на двумерном геометрическом моделировании.  [c.401]


Для правильного формирования сварного соединения и высоких механических свойств соединения необходимо, чтобы процесс протекал в определенной последовательности. Совместное графическое изображение изменения параметров при сварке называется циклограммой сварки.  [c.108]

Среди прочих проблем проектирования ЭМУ следует выделить вопросы конструирования, существо которых во многом определяется необходимостью обработки графической информации. В среднем до 70% всех работ по конструированию ЭМУ связано с формированием и преобразованием графических изображений. Вместе с тем конструирование ЭМУ тесно переплетается с анализом физических процессов, параметрической оптимизацией, расчетом допусков на параметры. Формирование конструктивного облика объекта невозможно без проведения целого ряда поверочных расчетов по определению механической прочности и теплового состояния элементов конструкции, моментов инерции, массы и других показателей. Параметры конструкции являются входными данными для выполнения проектных работ на различных этапах проектирования.  [c.17]

Для определенности предположим, что в результате ранее выполненных работ в базе данных бьшо сформировано описание объекта проектирования, включающее наборы данных для воспроизведения графических изображений деталей и узлов. На данном этапе проектирования изменениям могут быть подвергнуты параметры конструкции с целью достижения требуемого уровня показателей объекта. Разнообразие возможных задач проработки конструкции ЭМУ в процессе проектирования и подходов к их решению столь велико, что нет основания надеяться даже бегло рассмотреть их в пособии. Поэтому сосредоточим внимание на одном простом примере построения алгоритма проработки конструкции с тем, чтобы в дальнейшем читатель мог самостоятельно разобраться в особенностях других алгоритмов.  [c.199]

АКД РЭА облегчает создание чертежей электронных блоков, приборов, шкафов и других изделий, формируемых из стандартных и типовых составных частей. Она позволяет автоматизировать разработку конструкторской документации вариантов изделий в зависимости от заданных параметров, например, на основе базовых или унифицированных несущих конструкций модернизацию существующих конструкций выполнение чертежей с большим количеством однотипных графических изображений трудоемкий процесс составления перечней элементов, спецификаций и других текстовых документов. Средствами ЭВМ можно автоматизировать решение графических задач определение габаритных размеров конструкций, их площадей, объемов, параметров, условий их взаимного расположения и т.п.  [c.5]

И(Ю в настоящее время помимо подготовки базовых стандартов (например, на терминологию, методы испытаний, графические изображения и т.п.) разрабатывает международные стандарты на конкретную продукцию, поставляемую на мировой рынок, требования к ее техническим параметрам, конструктивным размерам, средствам хранения и упаковки.  [c.226]

Равновесные процессы изменения состояния характеризуются определенными значениями термодинамических параметров и поэтому допускают графическое изображение.  [c.20]

Равновесные, т. обратимые, процессы изменения состояния характеризуются определенными значениями термодинамических параметров в каждой точке процесса, поэтому возможно их графическое изображение.  [c.28]

Равновесный термодинамический процесс можно выразить графически. Если в системе координат v—p по оси абсцисс откладывать величины удельных объемов рабочего тела, а по оси ординат —величины его давления, то, зная эти два параметра для какого-либо состояния рабочего тела, можно на пересечении перпендикуляров, восстановленных из соответствующих этому состоянию абсцисс и ординат, получить точку, отображающую графически это состояние. Нанеся таким образом ряд точек, отображающих различные состояния газа, и соединив их линией, можно получить кривую, отображающую совершаемый газом процесс. Такое графическое изображение процесса носит название диаграммы v—p.  [c.17]


Графическое изображение режимов Т — о координатах дает возможность одновременно нанести на график механические свойства материалов, а следовательно, объяснить сущность некоторых явлений и причин отклонения расчетных параметров режима от фактических. Так, на рис. 3, б кривая 1 иллюстрирует режим нагрева образца при = 15 мм, г = 0,2 мм, I = 5 с, = 1773 К  [c.343]

Рис. 61. Типовое графическое изображение с параметрами Рис. 61. Типовое <a href="/info/335264">графическое изображение</a> с параметрами
Различаются графические модули с параметрами и без параметров. Первые описывают типовые графические изображения, для которых определены позиционные, метрические и логические параметры. Отдельные виды параметров могут отсутствовать. Графический модуль без параметров называется графической константой.  [c.138]

Устанавливают вид типового графического изображения, систематизируют позиционные, метрические и логические параметры, присваивают им идентификаторы.  [c.178]

Большинство применяемых в изделиях элементов имеет нормальное распределение отклонений параметров от номинала. Например, приведенная на фиг. 1.1 гистограмма является графическим изображением распределения величины емкости конденсаторов из одной промышленной партии.  [c.15]

Графическое изображение формулы (3) в безразмерных координатах и с параметром р = представлено на фиг. 4.  [c.185]

Решение системы уравнений (9) и графическое изображение характера переходного процесса с желаемой степенью точности может быть выполнено при любых конкретных значениях параметров системы.  [c.350]

На рис. 0.1 представлено графическое изображение параметров формулы (0.1) для соединения с натягом. Здесь f(D) Bf(d) — плотности распределения вероятностей случайных величин Dud. Заштрихованы участки кривых, которые не учитьшают как маловероятные при расчетах с принятой вероятностью Р.  [c.14]

Типовые графические изображения используются при оформлении стандартных деталей на сборочных и дета-лировочных чертежах объектов проектирования. Для сокращения объема графических работ при оформлении конструкторской документации широкое использование нашел метод слепышей . На рис. 4.16 показан слепыш для цилиндрического зубчатого колеса, на котором проставлены все размерные линии, характеристики поверхностей (отюлонения, значения шероховатости поверхностей), посадочные размеры и таблица параметров (модуль, число зубьев, степень точности, длина общей нормали, делительный диаметр и др.). Для конкретного зубчатого колеса значения перечисленных параметров проставляются от руки. Метод слепышей позволяет  [c.176]

Так, например, анализ рабочих чертежей элементов конструкции ЭМУ, выполненных в соответствии с требованиями ЕСКД, показал, что эти чертежи содержат не менее 100—150 графических элементов (отрезков прямых линий, окружностей и дуг окружностей и пр.). Кроме того, графическое изображение на чертеже сопровождается поясняющим текстом (в среднем 10—15 строк). Принимая во внимание, что программы, предназначенные для изготовления чертежей на графопострюи-телях, должны применяться при различных значениях параметров чертежа (геометрических размеров или координат характерных точек элементов изображения), необходимо предусмотреть специальные части этих программ, выполняющие функции формирования массива чертежа, элементы которого задают численные значения параметров в операторах черчения (см. 5.3). По объему эти части программ черчения в ряде случаев оказываются не меньше, чем собственно графические, в которых, в свою очередь, необходимо иметь как минимум один оператор для формирования каждого графического элемента. Поэтому общий объем одной программы для изготовления чертежа в данном случае составляет в среднем 200—300 операторов.  [c.267]

Смысл этого параметра состояния газа связан с подводом и отводом тепла от газа. В общем случае, как известно, при этом меняется температура газа, но для простоты рассмотрим сначала процесс при постоянной температуре — изотермический. Для того чтобы понять назначение параметра энтропия, поставим прежде всего задачу измерить графически с его помощью количество тепла в процессе— важнейшую характеристику каждого процесса, аналогично тому, как в ру-диаграмме графически измеряется другая важная величина — работа газа в процессе. Для этого, как и для графического изображения ра(5оты, необходимо пользоваться двумя параметрами. Для графического изображения количества тепла используем еще неизвестный нам параметр состояния —энтропию и в качестве второго параметра — абсолютную температуру газа, которая, как это видно будет в дальнейшем, в сильной степени определяет экономичность работы тепловых двигателей. Итак, пусть в начальном состоянии при проведении изотермического процесса энтропия 1 1сг газа s , в конечном 2, а постоянная температура в процессе Т.  [c.82]

В самом деле, всякий равновесный процесс изменения состояния тела представляет собой совокупность последовательно проходимых телом состояний равновесия, и поэтому в любой момент времени термодинамические параметры, в частности термические параметры тела р, Т и V, имеют вполне определенные значения, равные значениям их в состоянии равновесия. Благодаря этому каждое из состояни й тела в равновесном процессе может быть изображено в термодинамическом пространстве в виде точки с координатами, равными значениям давления, температуры и объема тела в данный момент. Совокупность этих точек образует в термодинамическом пространстве непрерывную линию, которая и представляет собой графическое изображение равновесного процесса вид этой линии зависит от закона, по которому происходит изменение состояния тела.  [c.20]


Неравновесный процесс не поддается графическому изображению, так 1сак рабочее тело системы, участвующее в процессе, одновременно имеет несколько разных значений параметров в различных частях.  [c.12]

Пусть, например, состояние рабочего тела, характеризуемое оире-делениыми значениями давления р и удельного объема V в координатах и, р изображается точкой I (см, рис. 6, а). Термодинамический процесс, сопровождающийся изменением этих параметров, изображается кривой 1-2. Однако графическое изображение такого процесса оказывается справедливым лишь при выполнении вполне определенных условий. Действительно, если скорость протекания процесса 1-2 конец-  [c.39]

Весьма важными для практики характеристиками движения являются скорости и ускорения точек механизмов. Вопрос определения скоростей движущейся в плоскости фигуры возникает перед инженером при проектировании механизмов парораспределения, автоматов и вообще во всех случаях, где имеет значение согласование движений отдельных звеньев механизма. При проектировании новых и изучении работы существующих механизмов имеет большое практическое значение учет сил инерции, которые зависят от ускорений соответствующих точек. Графические методы изучения законов движения дают простое и удобное в практическом отношении решение векторных уравнений для скоростей и ускорений. Задача исследования закономерности изменения путей, скоростей и ускорений за полный цикл движения исследуемого механизма в зависимости от заданного параметра наилучшим способом решается при помощи графиков дБижения, которые называют кинематическими диаграммами. Кинематическая диа -рамма дает наглядное графическое изображение изменения одного из кинематических элементов движения в зависимости от другого. Например,  [c.61]

Описание типового графического изображения, содержаш,ее информацию о графических объектах и операциях над ними, будем называть типовой графической процедурой (ТГП). Реализация ТГП — это процесс ее преобразования в соответствии с заданными числовыми значениями позиционных, метрических и логических параметров (см. п. 3 гл. 4) в выходную математческую модель графического объекта.  [c.177]

После подготовки и включения в библиотеку всех типовых графических изображений сложнорежущего инструмента составляется программа прикладного уровня, функции которой заключаются в записи числовых значений параметров типовых изображений, полученных программой автоматического проектирования инструмента составлении списка имен ТИ, образующих конкретный чертеж инструмента в передаче этого списка вместе с числовыми значениями параметров программам системы математического обеспечения чертежного автомата. Таким образом, программа прикладного уровня синтезирует чертеж из типовых изображений, а остальные программы трансформируют ТИ в соответствии с размерами и преобразуют соответствующие графические объекты в команды управления чертежным автоматом.  [c.223]

Для целей технической термодинамики и последующего изучения теплотехники можно рассматривать энтропию как функцию и параметр состояния тела. При графическом изображении процессов энтропию S используют как координату, позволяющую создать особую систему координат для исследования термодинамических процессов. Введение наукой этой функции (энтропии) значительно облегчает теоретические исследования и практические расчеты. В вычислениях энтропия измеряется в тех же единицах, как и теплоемкость, т. е. в ккал1кг-град. Энтропию будем обозначать буквой S для 1 кг и буквой S для G кг.  [c.95]

НИИ, что эти три параметра однородны во всей массе газа. В силу этого характеристическое уравнение справедливо и применимо только к равновесным состояниям газа. Графическое изображение в диаграмме состояния газа в виде точки возможно лишь при условии, что при этом состоянии параметры р, v и Т одинаковы во всей массе гава, т. е. применимо лишь к равно-весньш состояниям. Графическое изображение в диаграмме неравновесных состояний газа, к которому мы часто прибегаем в нашей практической деятельности, имеет условный и приближенный характер, и при этом степень неточности оказывается тем меньшей, чем в меньшей мере имеюш,ееся неравновесное состояние отличается от равновесного.  [c.92]


Смотреть страницы где упоминается термин Графическое изображение параметров : [c.99]    [c.103]    [c.240]    [c.215]    [c.179]    [c.43]    [c.18]    [c.91]    [c.85]    [c.126]    [c.309]    [c.13]    [c.24]   
Смотреть главы в:

Ракетные двигатели  -> Графическое изображение параметров



ПОИСК



Графические изображения

Графический

Графическое изображение характеристических параметров

Параметры изображения



© 2025 Mash-xxl.info Реклама на сайте