Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спонтанное и вынужденное излучение

Соотношение между коэффициентами спонтанного и вынужденного излучений имеет вид  [c.7]

Спонтанное и вынужденное излучение поглощение  [c.10]

В лазере используются три фундаментальных явления, происходящих при взаимодействии электромагнитных волн с веществом, а именно процессы спонтанного и вынужденного излучения и процесс поглощения.  [c.10]

Предположим снова, что атом первоначально находится на верхнем уровне 2 и на вещество падает электромагнитная волна с частотой V, определяемой выражением (1.1) (т. е. с частотой, равной частоте спонтанно испущенной волны). Поскольку частоты падающей волны и излучения, связанного с атомным переходом, равны друг другу, имеется конечная вероятность того, что падающая волна вызовет переход (2->-1) атома с уровня 2 на уровень 1. При этом разность энергий Е2 — Е1 выделится в виде электромагнитной волны, которая добавится к падающей. Это и есть явление вынужденного излучения. Между процессами спонтанного и вынужденного излучения имеется существенное отличие. В случае спонтанного излучения атом  [c.11]


Если атом находится в верхнем энергетическом состоянии, то вероятность перехода его в состояние с меньшим значением энергии имеет две составляющие. Первая зависит от свойств атома и не зависит от внешних факторов вторая линейно зависит от плотности энергии излучения, соответствующей частоте перехода. Первая составляющая определяет спонтанное излучение, вторая —- вынужденное (индуцированное) излучение. Вероятности спонтанного и вынужденного излучений определяются коэффициентами Эйнштейна А и В.  [c.8]

Таким образом, коэффициенты Эйнштейна для вынужденного излучения и поглощения оказываются равными. (Для вырожденных уровней с кратностями вырождения и g2 имеет место более общее соотношение Отметим еще раз, что для получения более точной формулы для излучения (1.13) оказалось совершенно необходимым ввести в рассмотрение два различных процесса излучения, а именно спонтанное и вынужденное излучение. При постоянной спектральной плотности энергии доля индуцированного излучения убывает по мере возрастания частоты.  [c.19]

Эйнштейн применил к описанию процессов спонтанного и вынужденного излучения вероятностные методы. При этом для проблемы равновесного излучения не имеет значения, присуща ли ве- роятность ансамблю физических объектов или самим элементарным законам, управляющим их поведением.  [c.704]

Спонтанное и вынужденное излучение 249  [c.249]

Таким образом, совместное действие квантовых механизмов спонтанного и вынужденного излучения обеспечивает экспериментально наблюдаемую спектральную плотность равновесного теплового излучения.  [c.251]

В гетеролазерах некоторая путаница может возникнуть вследствие того, что в них наряду с электрическим и магнитным полями, связанными с приложенным напряжением смешения и током через переход, существуют также оптические электрическое и магнитное поля, связанные со спонтанным и вынужденным излучениями. Однако различие частот полей смещения й в и с одной стороны, и оптических полей й о и Жд —  [c.36]

Связь между скоростями спонтанного и вынужденного излучений  [c.144]

Очевидно, что вопрос о характеристиках распространения и ослабления излучения на пути к мишени и при взаимодействии с веществом мишени является ключевым в лазерном дистанционном зондировании. В этой главе мы рассмотрим уравнение переноса излучения, которое используется для описания распространения излучения в виде коллимированных лазерных пучков. Вначале мы опишем только эффекты, связанные с процессами поглощения, а также спонтанного и вынужденного излучения (но не рассеяния) и уже на примере этих эффектов введем такое важное для лазерного дистанционного зондирования понятие, как оптическая толщина , относящееся как к среде, в которой распространяется излучение, так и к мишени. Этот материал не только представляет интерес в отношении лазерного дистанционного зондирования, но и является базой для дальнейшего рассмотрения основ физики лазеров.  [c.137]


Первый член в левой части уравнения (4.1) описывает скорость изменения плотности энергии поля излучения в спектральном интервале v,v с1у), второй член представляет дивергенцию потока энергии, а три члена в правой части уравнения учитывают спонтанное и вынужденное излучение источники) и поглощение сток) соответственно. В большинстве случаев, представляющих интерес для лазерного дистанционного зондирования, достаточно рассмотреть стационарное состояние. Кроме того, часто можно ограничиться рассмотрением излучения, распространяющегося в малом телесном угле ДО (около направления, которое мы будем считать направлением оси г). При этом уравнение (4.1) примет существенно упрощенный вид  [c.138]

Спонтанное и вынужденное испускание, поглощение. Если данный атом в произвольный момент времени t находился в возбужденном энергетическом состоянии Е , то через интервал времени dt этот атом может либо остаться в том же состоянии, либо самопроизвольно (спонтанно) перейти в нижнее основное состояние с энергией El (рис. 15.1). При этом возникает фотон с энергией hv — = 2 — 1- Испускание подобного рода — испускание света атомами при их самопроизвольном переходе с возбужденных уровней на более низкие энергетические уровни — называется спонтанным испусканием (излучением). Поскольку спонтанный переход происходит независимо от действия внеш-  [c.339]

Рекомбинационная люминесценция имеет более сложный характер. В этом случае свечение возникает при воссоединении двух противоположно заряженных частей центра свечения, отделенных друг от друга в момент возбуждения. Энергия, ранее затраченная на разъединение этих частиц, при их воссоединении выделяется и приводит в возбужденное состояние центр свечения. Переходя в нормальное состояние, этот центр и дает спонтанное или вынужденное излучение.  [c.171]

Уравнение переноса излучения. Это уравнение с учетом спонтанного и вынужденного (индуцированного) излучения и рассеяния по направлениям имеет вид (3-18)  [c.339]

М. п. составляют физ. основу широкого круга разнообразных эффектов, проявляющихся в изменении характеристик эл.-магн. излучения, а также свойств и состояния вещества. К ним относятся многофотонное поглощение и испускание, многофотонная ионизация атомов и молекул, многофотонный фотоэффект, широкий класс процессов рассеяния света и т. п. Каждый фотон, возникающий при М. п., может испускаться либо спонтанно, либо под действием внеш. излучения. В соответствии с этим М. п. делятся на спонтанные и вынужденные (индуцированные), такие, как спонтанное и вынужденное рассеяние света, спонтанное и вынужденное многофотонное излучение (см. также Комбинационное рассеяние света, Мандельштама — Бриллюэна рассеяние).  [c.167]

Вероятности спонтанных и вынужденных переходов связаны между собой соотношениями (1.24) и (1.25), поэтому вероятность индуцированных излучений с заданной частотой tt 2i(v) также зависит от v  [c.23]

В предыдущей главе мы рассмотрели принципиальные вопросы, возникающие при изучении единственного атома, взаимодействующего с монохроматической световой волной и излучающего спонтанно и вынужденно фотоны. При этом остался в тени важный для практики вопрос о том, каким образом может быть приготовлена система, состоящая только из одного атома. Если атомы исследуемого вещества находятся в газовой фазе, то задача уединения единственного атома является решаемой, но достаточно сложной технической проблемой. Однако исследования в газовой фазе становятся даже в принципе невозможными для сложных органических молекул, так как многие из них уже при небольшом нагревании, предшествующем испарению, распадаются. Поэтому в последние несколько лет успешно развиваются методы исследования единичных молекул, внедренных в твердые матрицы, охлажденные до гелиевых и более низких температур [18-20]. В этом случае перед нами стоит проблема исследования поглощения и излучения света единственным примесным центром. Однако оптические электроны примесной молекулы или атома взаимодействуют не только с электромагнитным полем, но и с колебаниями атомов матрицы (фононами). Это электрон-фононное взаимодействие приводит к рождению и уничтожению фононов в процессе оптического перехода в примеси. Оно актуально даже при сверхнизких температурах, потому что процессы рождения фононов имеют место даже при абсолютном нуле. Поэтому в теорию, изложенную в предыдущей главе, необходимо включить взаимодействие оптических электронов примесного центра с фононами. Фононы и другие низкочастотные возбуждения твердой матрицы рассматриваются в данной главе.  [c.53]


Вероятности спонтанных и вынужденных однофотонных переходов при взаимодействии излучения с веществом были рассмотрены Эйнштейном. Примем, что в поглощаемом излучение объеме 1 см вещества имеется Nn молекул в состоянии п (см. рис. 1.15). Тогда число молекул перешедших за 1 с из состояния п в состояние т при воздействии излучения частоты Vnm и спектральной плотностью p(v m), равно  [c.55]

Спонтанное и вынужденное гии осциллятора приводит, как было излучения показано в 9.2, к формуле (9.23),  [c.434]

Вынужденное рассеяние света однородной средой. В соответствии с данными, приведенными выше о спонтанном рассеянии света однородной средой, и исходя из основных положений о спонтанных и вынужденных процессах следует предполагать, что в однородной среде должно возникать вынужденное рассеяние света, обусловленное флуктуациями плотности (давления) и те.мпературы (энтропии) среды и анизотропии молекул, составляющих сроду. Действительно, при взаимодействии мощного лазерного излучения с сжатыми газами, жидкостями, стеклами И кристаллами наблюдаются вынужденные аналоги соответствующих спонтанных процессов рассеяния.  [c.131]

В предыдущих разделах были даны основные понятия процессов спонтанного и вынужденного излучений, а также поглощения. На языке фотонов эти процессы можно описать следующим образом (рис. 1.1) 1) в процессе спонтанного излучения атом, испуская фотон, переходит с уровня 2 на уровень 1 2) в процессе вынужденного излучения падающий фотон вызывает переход 2->-1, в результате чего мы получаем два фотона (падающий плюс испущенный) 3) в процессе поглощения падающий фотон поглощается, вызывая переход 1 2. Следует отметить, что а, 2 = 021, как показал Эйнщтейн еще в начале XX в. Это означает, что вероятности вынужденного излучения и поглощения равны друг другу. Поэтому в дальнейщем мы будем писать (Ti 2 = (Т21 = ст, понимая под а сечение данного перехода Число атомов в единице объема, находящихся на данном энергетическом уровне, будем называть населенностью этого уровня.  [c.13]

Из представленного выше рассмотрения ясно, что генерация в С02-лазере может осуществляться на переходе либо (00° 1) (10 0) (Я =10,6 мкм), либо (00 Ч) (02 >0) (Я = 9,6 мкм). Поскольку сечение первого перехода больше, а верхний уровень один и тот же, генерация, как правило, происходит на переходе 00°1 10°0. Для получения генерации на линии 9,6 мкм в резонатор для подавления генерации на линии с наибольшим усилением помещается соответствующее частотно-селективное устройство (часто применяется система, изображенная на рис. 5.4,6). До сих пор в нашем обсуждении мы пренебрегали тем фактом, что как верхний, так и нижний лазерный уровни на самом деле состоят из многих близко расположенных вращательных уровней. Соответственно и лазерный переход может состоять из нескольких равноотстоящих колебательно-вращательных переходов, принадлежащих Р- или / -ветвям (см. рис. 2.28), причем Р-ветвь дает наибольшее лазерное усиление. Для полноты картины следует также учесть тот факт, что благодаря больцманов-скому распределению населенности между вращательными уровнями наибольшую населенность имеет вращательный уровень /" = 21 верхнего 00°1 состояния (рис. 6.16)На самом деле генерация фактически будет происходить на колебательно-вращательном переходе с наибольшим усилением, т. е. начинающемся с самого населенного уровня. Это происходит потому, что скорость термализации вращательных уровней в С02-лазере [ 10 с- -(мм рт. ст.)- ] больше, чем скорость уменьшения населенности (за счет спонтанного и вынужденного излучения) того вращательного уровня, с которого происходит лазерная генерация. Поэтому в генерации лазера на вращательном переходе с максимальным усилением будет принимать участие полная населенность всех вращательных уровней. Следовательно, подытоживая наше обсуждение, можно сказать, что генерация в СО2-лазере при нормальных условиях возникает на линии Р (22) [т. е. (/ = 21) (/" = 22)] перехода (00 1) (10 0). Другиели-нии того же самого перехода, а также линии, принадлежащие  [c.365]

Рио. 1. Спонтанное и вынужденное излучение. Обмен энергией между квантовой системой и апектромагнитным излучением может происходить разными способами. Здесь мы предполагаем, что система обладает только двумя энергетическими уровнями, а единичный акт излучения представлен частицей — фотоном с энергией, пропорциональной длине волны. На верхней схеме Ш фотон поглощается системой, которая переходит при этом о нижнего уровня на верхний. На схеме (II) система возвращается в нижнее состояние, испуская фотон той же энергии это испускание, называемое спонтанным, происходит за время, равное в среднем времени жизни верхнего уровня. На (Ш) фотон взаимодействует с системой, находящейся в возбужденном состоянии. При этом система переходит в нижнее состояние с испусканием фотона, и образуются два фотона с той же энергией, что и у падающего. Такое излучение, называемое вынужденным, является основой действия лазеров и повволяет получать очень большое число фотонов в фазе друг с другом, образующих то, что называется когерентным  [c.33]

Часть этой энергии преобразуется в тепловые колебания решетки благодаря механизму безызлучателъпой релаксации. Оставшаяся часть поглощенно энергии высвечивается в виде спонтанного и вынужденного излучения. При этом только вынужденные переходы, для которых выполняются условия когерентности, при-водят к усилению направленною потока фоюнов. Спонтанное же излучение направлено во все стороны.  [c.258]

В 4 приводятся выражения для коэффициента поглощения и скоростей спонтанного и вынужденного излучений в полупроводниках. Эти выражения требуют вычисления матричного элемента и плотности состояний в зоне проводимости и валентной зоне. Для обычно встречающихся концентраций примеси в ак- тивных областях полупроводниковых лазеров плотность состояний в зоне проводимости н валентной зоие зависит от концентрации примеси,.что приводит к образованию хвостов зон внутри запрещенной зоны. Представление хвостов зон моделями Кейна [4] и Гальперина и Лэкса [5] дано в 5 этой главы.  [c.133]


Если квантовая система помещена в поле излучения с частотой V, близкой к пт (насколько должны быть близки частоты, мы вскоре увидим), то возможны два других радиационных процесса. Поле излучения может вызвать (или индуцировать) переход системы, находящейся в состоянии п ), в состояние т> с вероятностью В тр(г), где В,,т — коэффициент Эйнштейна для вынужденного излучения, а р(у)—спектральная плотность энергии поля излучения. Важным различием мсжд спонтанным и вынужденным излучением является то, что в последнем случае испутценное вынужденное излучение имеет тс же частоту, направление распространения и фазу, что и падающее излучение. Иными словами, индуцированный фотон идентичен падающему.  [c.102]

Разберемся подробнее в этом важном вопросе. Соотношение Annl mn указывает, что отношение коэффициентов Эйнштейна для спонтанного и вынужденного переходов при переходе от видимой части спектра (л 10" см) к метровым радиоволнам должно уменьшиться примерно в 10 раз. Поэтому не должна удивлять разница в механизме процессов излучения для этих двух столь различных диапазонов спектра электромагнитных волн.  [c.429]

Спонтанное и вынужденное испускание света (излучение люминесценции и лазерное излучение). Люминесцентное излучение образуется в результате спонтанных переходов центров люминесценции из возбужденных состояний в невозбужденные (или менее возбужденные). Иначе говоря, заключительный этап люминесценции связан с процессами спонтанного испускания сзета.  [c.186]

Рассмотрим характер излучательных переходов, основываясь на классической работе Эйнштейна, который еще в 1917 г. ввел понятие о спонтанных и индуцированных переходах. Система, состоящая из двух уровней, показана на рис. 29. Если Е > Е , энергетический уровень 2 лежит выше уровня / и частица находится на уровне 2, то она может перейти на уровень /, испустив квант электромагнитного излучения Лv2l = Е — Е . При этом возможно как спонтанное, так и вынужденное излучение. Вероятность спонтанного излучения, т. е. того, что процесс произойдет за промежуток времени (И, составляет Л 21 При облучении происходит взаимодействие кванта излучения с частицами, составляющими систему, что приводит к одному из двух процессов переходу частицы с уровня / на уровень 2 (поглощение) или, если частица была возбуждена, к обратному переходу (испускание). Вероятность, что какой-то из процессов произойдет за время сИ, пропорциональна плотности излучения и (у) и поэтому может быть записана соответственно В12 и (V) (И и 21 и (V) си.  [c.60]

Спонтанные и вынужденные переходы. Возбуждённый атом из состояния S2 может пере1гти в состояние с испусканием фотона как самопроизвольно (спонтанное испускание), так и иод действием ЭЛ.-маги, излучения (и н д у ц и р о в а и н о е, или в ы н у ж д о и и о е, и с и у с к а н и е).  [c.546]

СИЛА ОСЦИЛЛЯТОРА — безразмерная величина, через к-рую выражаются вероятности квантовых переходов в процессах излучения, фотопоглощения и кулоновского возбуждения атомных, молекулярных или ядер-ных систем. С помощью С. о. находят вероятности спонтанного и вынужденного испускания и поглощения Света, поляризуемости атомов, ширины уровней энергии и спектральных линий и др. важные характеристики систем. С. о. вводят для описания дипольных алектрических и магнитных, а также электрич. квадру-польных излучений [1—5]. В случае алектровных переходов в атомах злектрич. дипольные С. о., как правило, порядка десятых долей единицы, а для магн. дипольных и злектрич. квадрупольных переходов — порядка 10- —  [c.495]

Между уровнями i и j помихмо спонтанных и вынужденных переходов, сопровождаемых излучением или поглощением фотонов, возможны также и безызлучательные переходы, определяемые вероятностями djj и djt, когда энергия перехода передается или получается атомом без излучения.  [c.9]

Хотя элементарная квантовая теория излучения абсолютно черного тела не позволяет теоретически вычислить значения коэффициентов Эйнщтейна, она демонстрирует необходимость существования спонтанных и вынужденных переходов, причем для вероятностей вынужденных  [c.309]

Вынужденное излучение представляет собой лавинообразный процесс рождения тождественных фотонов. При этом возможно получение излучения чрезвычайно узкой спектральной ширины, что мы и подчеркивали б (V — Vo). Действительно, так для алюмоитриевого граната, активированного неодимом (ИАГ N(1 ), полуишрина спектра непрерывной генерации достигает 10" нм (50 Гц). Спектр же спонтанного излучения широк (в данном случае примерно 1 нм). Следует подчеркнуть, что полная вероятность перехода квантовой частицы из состояния / в состояние к с излучением фотона равна сумме вероятностей спонтанного и индуцированного излучений. При этом фотоны спонтанного излучения в отличие от фотонов вынужденного излучения не когерентны. Поэтому естественным источником шума, который ограничивает чувствительность квантового усилителя и стабильность генератора, будет спонтанное излучение.  [c.28]


Смотреть страницы где упоминается термин Спонтанное и вынужденное излучение : [c.171]    [c.18]    [c.64]    [c.133]    [c.174]    [c.210]    [c.128]    [c.120]    [c.264]   
Смотреть главы в:

Основы оптики  -> Спонтанное и вынужденное излучение



ПОИСК



Излучение вынужденное

Излучение спонтанное

По спонтанная



© 2025 Mash-xxl.info Реклама на сайте