Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предмет и методы механики сплошной среды

Предмет и методы механики сплошной среды  [c.9]

ПРЕДМЕТ И МЕТОД МЕХАНИКИ СПЛОШНОЙ СРЕДЫ  [c.1]

Предметом механики сплошных сред как научной дисциплины является механическое движение различных твердых, жидких и газообразных тел под влиянием прилагаемых сил. Основной метод исследования состоит в замене реального тела некоторой моделью. Под словом модель в механике сплошной среды понимают систему уравнений, связывающих историю деформирования частицы тела с ее напряженным состоянием (в эту систему могут входить и даже быть определяющими немеханические величины, такие как температура, электромагнитные константы, химические потенциалы, плотность дислокаций и пр. в этом случае они управляются своими дополнительными кинетическими уравнениями ). Модель строится с тем расчетом, чтобы охватить главные черты определенного класса процессов (т. е. диапазон давлений, скоростей, усилий, температур и пр.) для некоторого класса реальных тел.  [c.277]


Многочисленные наблюдения указывают на молекулярное строение изучаемых материальных объектов. Однако при рассмотрении механических движений различных тел принято допущение о сплошности последних. Это представление не противоречит физическим данным, ибо тело, состоящее из молекул, можно разделить на малые элементы объема, содержащие много молекул. Заметим, что кубик воздуха со стороной 0,001 мм содержит 2,7 10 молекул. Такие элементы можно назвать физически бесконечно малыми. Характеризуя их средними величинами скоростей, ускорений, сил, действующих на молекулы, придем к представлению о теле как сплошной среде. Это представление удобно в том отношении, что методы математического анализа приспособлены для сплошных сред, тогда как математическая обработка прерывных сред значительно затруднена. Представление о телах, как сплошных средах, и обусловило общее название предмета механика сплошных сред .  [c.5]

Излагаемый в книге предмет требует некоторого знакомства с теорией упругости и матричным анализом конструкций, а следовательно, с основами теории дифференциальных уравнений в частных производных, методами решения больших алгебраических систем и теорией анализа конструкций. Автор надеется, что каждая из этих тем нашла отражение в начальных главах книги — из опыта он знает, что обычно в курсах по конечно-элементному анализу предварительному знакомству с указанными разделами уделяется мало места. Спешим, однако, добавить, что достаточно полное изложение основ теории упругости, как правило, можно найти в современных учебниках по механике сплошных сред, предназначенных для студентов младших курсов.  [c.7]

Расчеты на прочность изделий сложной формы. Излагая в предыдущей главе теорию сложного напряженного состояния, мы совершенно обошли молчанием вопрос о том, каким образом определить напряженное состояние в телах, подверженных действию сил. Общая задача об определении напряжений и деформаций в упругом теле произвольной формы, подверженном действию произвольных внешних сил, является предметом теории упругости, которая представляет собою раздел механики сплошной среды и развивается в направлении создания и усовершенствования методов решения соответствующих краевых задач для некоторых систем дифференциальных уравнений в частных производных. Несмотря на огромные успехи математической теории упругости, далеко не все задачи, представляющие практический интерес, удается решить во многих случаях, даже когда точное решение или метод его отыскания известны, практическое использование этого решения для расчета на прочность затруднительно ввиду чрезвычайной сложности и громоздкости вычислений. с другой стороны, знания распределения напряжений в теле в упругой стадии его работы еще недостаточно для суждения о прочности. Как мы убедились на примере статически неопределимых стержневых систем, переход некоторых элементов в состояние текучести еще не означает разрушения системы в целом. Тем более это относится к телу, находящемуся в условиях сложного напряженного состояния. Достижение состояния текучести в одной или нескольких точках само по себе не является опасным окруженный упругими областями, материал не имеет фактической возможности течь. В то же время, после того как состояние текучести где-та достигнуто, дальнейшее увеличение нагрузки приводит к образованию пластических зон конечных размеров.  [c.104]


Теоретические понятия и определения аэродинамики, рассмотренные выше, основаны на гипотезе сплошности газовой среды. Однако с увеличением высоты полета в связи с уменьшением плотности воздуха возрастает длина свободного пробега молекул. Предметом аэродинамики разреженной среды и является исследование течений при значительных длинах свободного пробега, соизмеримых, в частности, с толщиной пограничного слоя. Для этого режима течения уже неприменимы газодинамические соотношения сплошной среды и необходимо пользоваться кинетической теорией, исследующей движение газа с помощью молекулярной механики. Важнейшие выводы этой теории и изложенные в настоящей главе методы аэродинамического расчета основаны на дискретной схеме строения газа. В соответствии с этой схемой рассматриваются режимы свободномолекулярного потока и течения со скольжением, соответствующие зависимости для расчета давления, напряжения трения и энергии падающих и отраженных частиц. При формулировке вопросов и  [c.710]

Ориентационное усреднение применяем как средство перехода к описанию свойств таких объемов К Ко, в которых возможна формулировка задачи уже в терминах инженерной механики материалов, т. е. в физически наблюдаемых величинах, характеризующих свойства кристалла как сплошной и относительно однородной среды. Обращение к ориентационным методам усреднения делает предмет анализа математически определенным, поскольку законы преобразования всех переменных в угловых пространствах известны и сводятся к использованию определений такого понятия, как тензор произвольной валентности. В то же время усреднение по пространственным координатам трудноосуществимо, так как конкретное распределение деформаций, напряжений и других переменных по координатам обычно совершенно неизвестно. В некоторых случаях будем прибегать к статистическим методам усреднения, если искомые характеристики действительно определяются какой-либо пространственной статистикой.  [c.13]

Следующие элементы структуры в зависимости от подхода к их анализу можно отнести как к физике твердого тела, так и к прикладному материаловедению (металловедению). Среди них линии скольжения 5 и полосы скольжения 6, микропоры и микровключения 7, зерна и волокна 8, микротрещины 9. Сюда можно отнести такие элементы структуры, характеризующие состояние поверхности высоты рельефа микрошероховатости 10 и характерные длины этого рельефа 11. Перечисленные элементы имеют масштабы длины, лежащие приблизительно в одном и том же диапазоне 10 . .. 10 м. Существенно, что на этом уровне допустимо рассматривать материал с позиций механики сплошной среды (более того, методы теории упругости применяют уже в теории дислокаций). Кроме того, предметом механики  [c.119]

Предлагаемая вниманию читателей книга известного французского ученого Ж. Можена являет собой яркий пример последовательного приложения всей мощи аппарата современной механики сплошных сред для построения и развития электродинамики твердых деформируемых тел. В настоящее время это самостоятельный предмет, в котором модельные представления охватывают большое число самых разнообразных природных явлений, широко используемых в науке и технике. Книга написана так, что все конкретные модели строятся в рамках единой общей схемы — на основе общих принципов механики и термодинамики. В то же время, поскольку изложение ведется в традиционном и не требующем специальной подготовки ньютоновском приближении, то читатель получает прекрасный рабочий инструмент, непосредственно применимый для решения конкретных практических задач. Большое внимание уделяется методам построения определяющих уравнений — специальных соотношений, вытекающих из законов сохранения и замыкающих систему уравнений. Отличительной особенностью книги является широкое использование лагранжевой системы координат. На основе развитой схемы представлены классические теории пьезоэлектричества и магнитоупругости, а также новые и, несомненно, более сложные теории упругих ферромагнитных тел, упругих ионных кристаллов, сегнетоэлектриков и керамик, построение которых потребовало введения новых параметров и новых феноменологических уравнений.  [c.5]


Несколько лет назад занялся анализом возможности применения метода конечных элементов к изучению больших деформаций упругих тел. Неожиданный успех уже первых исследований (некоторые из результатов этих исследований вошли в настоящую книгу) вдохновил меня, и я решил заняться нелинейными сплошными средами общего вида. В последующие годы я подготовил и прочел в Алабамском университете в Хантсвилле курс лекций по применениям метода конечных элементов в нелинейной механике, в котором я попытался объединить основы механики сплошных сред и современные методы численного анализа. При таком объединении каждый из этих предметов приобретает новое содержание и значение. Нелинейные теории поля в механике ценны уже не только тем, что они представляют собой элегантное обобщение классических теорий, но и тем, что с помощью электронных машин они становятся источником получения количественной информации о действительных происходящих в природе нелинейных явлениях. Понятие конечного злемента с его простотой и общностью служит тем самым звеном, которое соединяет вместе эти различные предметы, причем соединяет их способом, который в ретроспективе выгля-  [c.6]

Книга включает введение и семь глав. Во введении изложены элементы физической механики применительно к таким состояниям среды, как газ, жидкость, кристаллическое и аморфное твердые тела, и сформулированы основные гипотезы и предмет термомеханики, а в первой главе приведены используемые далее в книге понятия и соотношения тензорного исчисления. Вторая глава посвящена описанию движения и деформирования сплошной среды и изложению теории напряжений. Законы сохранения физических субстанций и основы термодинамики необратимых процессов рассмотрены в третьей главе. В остальных четырех главах методы термомеханики применены к построению линейных математических моделей жидкости, термоупругой и термовязкоупругой сплошных сред, а также нелинейных моделей термоупругопластической среды.  [c.5]


Смотреть главы в:

Механика сплошной среды Т.1  -> Предмет и методы механики сплошной среды



ПОИСК



Механика предмет

Механика сплошной

Механика сплошных сред

ПРЕДМЕТЙЫЙ

Предмет и метод

Предмет механики сплошных сред

Среда сплошная



© 2025 Mash-xxl.info Реклама на сайте