Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность рабочих лопаток газовых турбин

ПРОЧНОСТЬ РАБОЧИХ ЛОПАТОК ГАЗОВЫХ ТУРБИН  [c.277]

Длительная прочность при переменных температурах и напряжениях. Оценка прочности материалов при переменных температурах имеет большое значение для деталей различных теплосиловых установок и особенно газовых турбин. Так, например, температура рабочих лопаток газовой турбины мощностью 1500 кВт, работающих на электростанции при компрессорной станции магистрального газопровода в условиях наличия внешних потребителей, меняется в течение суток от 600 до 760 С.  [c.163]


Увеличение температуры газа прежде всего ограничивается прочностью рабочих лопаток турбины. Решение задачи повышения температуры газа при сохранении необходимой надежности работы элементов газовой турбины идет по двум направлениям дальнейшее повышение жаропрочности и жаростойкости материалов, а также разработка керамических и спеченных материалов для турбинных лопаток. Опыт показывает, что решение этой проблемы связано с большими трудностями. Средний темп прироста температуры газа благодаря повышению жаропрочности металлических материалов за последние 20 лет не превышает 10 К в год. В настояш,ее время турбинные лопатки, выполненные из лучших литых сплавов на основе никеля и кобальта, могут работать длительное время без охлаждения при температуре газа не выше 1250 К.  [c.188]

Настоящий обзор подтверждает, что композиционные материалы, состоящие из жаропрочного сплава и тугоплавкой проволоки, характеризуются достаточно высокими значениями прочности и сопротивлением удару, что обусловливает значительные потенциальные возмон иости их использования для усовершенствованных лопаток газовых турбин. Полученные данные также указывают на потенциальную возможность увеличения рабочих температур материалов лопаток турбин до 1200° С и выше. Однако до сих пор получено небольшое число данных по окислению, эрозии и сопротивлению термической и механической усталости композиционных материалов. Необходимы дополнительные испытания для определения служебных характеристик композиций жаропрочный сплав — тугоплавкая проволока при всех условиях воздействия среды и нагружения. Легко воспроизводимые хорошие механические свойства и высокие потенциальные возможности увеличения долговечности работы турбин обосновывают необходимость дальнейших работ по всесторонней оценке свойств этих материалов. Может быть сделан ряд выводов,  [c.273]

Повышение температуры газов перед турбиной представляет собой существенную проблему, заключающейся в слабости лопаток газовой турбины. Поток газов, вырывающийся из соплового аппарата, нагрет до 900° С и более. Естественно, что лопатки при такой температуре газового потока сильно нагреваются. Их температура всего лишь на 100... 150°С ниже температуры газового потока. Самые прочные материалы катастрофически теряют прочность при таком нагреве. Чтобы сохранить огромную прочность при высоких рабочих температурах, лопатки газовой турбины изготавливают из особых жаропрочных сплавов, в которые входят многие ценные и редкие металлы - вольфрам, кобальт, никель, ванадий, ниобий и другие.  [c.471]


Рабочие лопатки газовых турбин с целью получения более высокого КПД почти всегда для всех ступеней выполняют закрученными, с уменьшающимся сечением по высоте лопатки. Способы крепления рабочих лопаток к ротору применяют такие же, как и в паровых турбинах. Хорошо зарекомендовало себя в работе при высоких температурах и больших нагрузках крепление лопаток елочным хвостовиком. Оно отличается высокой прочностью, позволяет легко производить смену лопаток и осуществлять охлаждение дисков и хвостовиков лопаток путем продувки воздуха через монтажные зазоры (рис. 13.3).  [c.399]

В связи с увеличением частоты вращения деталей современных машин возникла необходимость в более глубоком изучении усталостной прочности тех узлов, которые воспринимают переменную нагрузку высокой частоты. Например, в газовой турбине, имеющей в сопловом аппарате 50 направляющих лопаток, рабочая лопатка при частоте вращения 12 000 об/мин воспринимает нагрузку с частотой 10 кГц. Переменная нагрузка такой высокой частоты может быть причиной усталостных разрушений лопаток.  [c.234]

Использование паяных бандажей при высоких температурах в газовых турбинах встречает существенные трудности в связи с относительно низкой жаропрочностью применяемых припоев и трудностями использования при пайке рабочих лопаток специальных жаропрочных припоев. На фиг. 102 приведен график изменения прочности паяных соединений в зависимости от типа припоев. Соединения, выполненные серебряным припоем марки ПРС-45, уже начиная с температуры 200°, существенно снижают свою прочность. Использование медно-цинкового припоя типа ЛОК-59-0,3 позволяет повысить область температур его возможного применения до 300—350°. Лишь введение специальных жаропрочных припоев на никелевой основе дает возможность использовать паяные соединения до 700—750°.  [c.152]

Современные стационарные газовые турбины проектируются для температуры газа до 750°. Дальнейшее развитие газовых турбин в основном зависит от уровня техники производства соответствующих высококачественных жароупорных сплавов. Для ответственных деталей турбин, рабочих лопаток и дисков допускаемые напряжения принимаются равными 60% от длительной прочности за 100 тысяч часов работы и 100% предела текучести, соответствующей сум марной деформации в 1% за 100 тысяч часов работы.  [c.344]

Основное назначение этой группы высоколегированных сплавов — изготовление рабочих лопаток и дисков газовых турбин. Диски работают при более высоких напряжениях, чем лопатки (но при несколько пониженной температуре), поэтому материал диска должен иметь высокое сопротивление ползучести (особенно на ободе) и повышенную прочность (в ступичной части).  [c.555]

При проектировании рабочих лопаток для высокотемпературных газовых турбин целесообразно исходить из условия, чтобы на большей части длины пера лопатки запас прочности п, определяемый формулой (33), был бы равен минимально допустимому запасу [п]. У конца лопатки, где напряжения малы, а в некоторых случаях и у замковой части, где температура значительно снижается, величина п может быть больше [п], т. е.  [c.279]

Электрофизические методы-часто сочетают с механическими методами обработки электрофизическими методами обрабатывают рабочие части лопаток, а механическим резанием — осталь. ные элементы. Электрофизические методы, проверенные при изготовлении лопаток из жаропрочных сплавов, применяют в се-рийном производстве лопаток не только газовых турбин, но и паровых турбин, имеющих сложную форму, независимо от жара прочности материала. Они уже успешно используются при обработке лопаток длиной до 350 мм и внедряются при обработке лопаток большей длины.  [c.138]

Помимо конструкторских разработок по совершенствованию аэродинамики проточной части и рационального использования повышения жаростойкости и жаропрочности материалов конструктору и технологу приходится постоянно совершенствовать системы воздушного охлаждения сопловых и рабочих лопаток, дисков и других деталей турбин, работать над обеспечением равномерности температурного поля перед газовой турбиной, статической и динамической прочности и снижением массы турбины.  [c.163]


К числу сильно нагруженных деталей относятся также диски газовых турбин, которые, как и рабочие лопатки, подвержены совместному воздействию нагрева и механических нагрузок. Нагружение дисков турбомашин и их прочность подробно рассмотрены в разд. 11.4. Отметим, что среди большого числа факторов нагружения дисков следует особо выделить растягивающие усилия от центробежных сил массы самого диска и закрепленных на нем рабочих лопаток, а также усилия растяжения - сжатия в диске, обусловленные его неравномерным прогревом вдоль радиуса. Данные факторы нагружения являются опасными, так как вызываемые ими напряжения достигают очень больших значений и,кроме того, распределяются почти равномерно по толщине диска. Последнее обстоятельство создает условия, при которых невозможно перераспределение напряжений по толщине диска с ростом нагрузки. При расчете статической местной прочности диска указанные факторы нагружения рассматриваются как основные.  [c.262]

При проектировании рабочих лопаток для высокотемпературных газовых турбин целесообразно исходить из условия, чтобы на большей части длины пера лопатки запас длительной прочности п, определяемый формулой  [c.282]

Лопатки компрессоров. На лопатки как осевых, так и центробежных компрессоров обычно действуют значительные вибрационные нагрузки. В связи с этим основными требованиями являются высокая усталостная прочность материала и его способность к демпфированию колебаний. Поскольку в компрессорах конструкционное демпфирование играет сравнительно меньшую роль по сравнению с аэродинамическим, а иногда и демпфированием в материале, то выбор материала лопаток и режима его термообработки проводят с учетом требования получения декремента затухания максимально возможного значения. Следует иметь в виду, что логарифмический декремент затухания колебаний у широко применяемых для лопаток хромистых сталей с повышением температуры, уровня вибрационных и растягивающих напряжений увеличивается. Тем не менее вибрационные напряжения в рабочих лопатках иногда достигают 200 МПа. Так, повреждения от ударов посторонним предметом или коррозионные повреждения (коррозионное растрескивание) являются концентраторами, резко снижающими усталостную прочность лопаток. Поэтому используются все меры, позволяющие повысить предел усталости, в частности соответствующая обработка поверхности. Требования коррозионной стойкости материала и его сопротивления коррозионной усталости являются особенно важными для компрессоров газовых турбин, работающих в морских условиях. Материал компрессорных лопаток, работающих на загрязненном воздухе, должен противостоять эрозии. В противном случае сопротивление эрозии должно обеспечиваться применением специальных покрытий. Под действием центробежных сил в лопатках возникают растягивающие напряжения, поэтому материал должен также обладать определенным уровнем прочностных свойств при рабочих температурах. Особенно существенным становится это требование для высокооборотных компрессоров. В компрессорах с большими степенями сжатия температура лопаток может достигать уровня, при котором необходимо учитывать изменение характеристик материала во времени, в частности сопротивление ползучести.  [c.40]

Описаны результаты комплекса исследований свойств (коррозионная стойкость, структура, длительная, усталостная и термоусталостная прочность и др.) защитных покрытий и материала лопаток газовых турбин. Обоснована применимость электронно-лучевого покрытия Со—Сг—А1—У для защиты от коррозии рабочих лопаток ТВД и ТНД установок типа ГТ-100, работающих в пиковом реяише.  [c.244]

Важной проблемой для конструкторов лопаток турбин является снижение прочности материала при увеличении температуры. Это явление наблюдается также и при нагреве полимерных материалов (фиг. XVII. И) и учитывается при выборе материала для лопаток.В связи с относительно невысокой прочностью кремний-органических смол —этих лучших по теплостойкости полимерных материалов, из которых изготовляют конструкционные элементы, работающие при температуре 200—260° С, лопатки газовых турбин изготовляют из других более прочных, но менее теплостойких материалов. Например, для рабочих температур свыше 200° С их делают из фенопластов с наполнителем в виде стеклянных или нейлоновых волокон для температур до 200°С— из полиэфирных смол с волокнистыми стеклянными или нейлоновыми наполнителями.  [c.357]

Наиболее широко покрытия на суперсплавах применяются на узлах и деталях высокотемпературных секций газовых турбин, таких как камеры сгорания, рабочие и направляющие лопатки. Необходимость в таких покрытиях возникла в 1950-х гг. при производстве авиационных двигателей, когда стало очевидно, что требования к составу материала для улучшения его высокотемпературной прочности и достижения оптимальной степени зашиты от воздействия высокотемпературной окружающей среды несовместимы. Повышение рабочей температуры вызывало интенсивное окисление никелевых и кобальтовых суперсплавов, применявшихся для изготовления рабочих и направляющих лопаток турбин. Необходимость решения проблемы окисления суперсплавов привела к разработке алюми-нидных диффузионных покрытий, некоторые из которых применяются до сих пор.  [c.89]

Развитие современного газотурбостроения в связи с повышением значений параметров режимов, обеспечением ресурса и надежности турбин предъявляет жесткие требования к прочности наиболее ответственных их элементов — лопаток. К настоящему времени накоплен обширный опыт по исследованию термоциклической прочности элементов газовых турбин [44, 60, 75], разработаны и совершенствуются методы натурных испытаний [1, 23, 51]. Отличительной особенностью стендов для исследования рабочих лопаток является наличие устройств для создания в лопатке статических растягивающих нагрузок, моделирующих действие центробежных сил, и устройств для возбуждения колебаний в лопатках, модели-руюцхих вибрации рабочих лопаток вследствие пульсации потока в газотурбинном двигателе [1, 51].  [c.157]


В турбовинтовом двигателе с открытым циклом (фиг. 139, а), работающем по принципу газовой турбины, рабочее вещество приводит в движение турбину, а затем так же, как и в ракетных двигателях, выбрасывается в атмосс ру. В двигателях с закрытым циклом в качестве рабочего вещества можно использовать гелий, углекислый газ, водяной пар под давлением или, наконец, пары ртути. Однако использование воды и углекислого газа имеет то неудобство, что под действием радиоактивного излучения реактора они разлагаются. Как и в предыдущем случае, максимальная допустимая температура определяется механит ческой прочностью лопаток турбины.  [c.213]

Надежность двигателя в знз1Чительной степени определяется прочностью турбинных рабочих лопаток, испытывающих разнообразные нагрузки, в частности, действие центробежных и газовых сил, вызывающих напряжения растяжения, изгиба и кручения. С ними суммируются напряжения от вибрации и связанные с неравномерностью нагрева тепловые напряжения. В соответствии с требованиями снижения уровня напряжений изгиба от газовых сил центры тяжести сечений могут располагаться не на строго радиальном луче, проходящем через центр тяжести корневого сечения, а на луче наклонном либо на пространственной кривой.  [c.144]

Тепловым двигателем в такой установке является газовая турбина. Компрессор служит в качестве вспомогательной машины, назначение которой состоит в том, чтобы забирать из окружающей среды воздух, необходимый для горения топлива, сжимать его и при повышенном давлении нагнетать в камеру горения 2, в которую подается насосом жидкое топливо (или особым газовым компрессором — газовое топливо). В камере сгорания происходит горение топлива, в результате чего получается рабочее тело — продукты горения высокой температуры (1 200—1 500°С). Для создания условий надежной работы первых рядов лопаток продукты горения, выходяшие из камеры горения при столь высокой температуре, смешивают с холодным воздухом, подаваемым компрессором. Получившаяся газовая смесь приемлемой по условиям прочности металла лопаток температуры (600—800 X) поступает в газовую турбину 4, расширяется в соплах, а затем передает свою кинетическую энергию лопаткам. Отработавшие газы через патрубок покидают газовую турбину. Часть механической энергии, полученной в турбине, тратится на работу компрессора, остальная используется для вращения электрического генератора (или какой-либо машины).  [c.144]

Основными преимуществами вакуумно-дугового технологического процесса применительно к нанесению покрытий на лопатки газовых турбин являются возможность распыления практически любых металлов и сплавов сложного состава высокая энергия плазменного потока, обеспечивающая получение высокой прочности сцепления покрытий, что иногда может привести к отказу от высокотемпературного диффузионного отжига возможность сканирования плазменным потоком с помощью магнитной системы, что позволяет направлять его на любые выбранные участки подложки и способствует нанесению покрытий с высокой равномерностью на крупногабаритные изделия и изделия сложной формы относительно невысокая и регулируемая в процессе нанесения покрытия температура изделия, что не приводит к изменению фазового состава основного металла лопаток и в ряде случаев позволяет отказаться от восстановительной термической обработки, необходимой при других методах нанесения высокий коэффициент использования рабочих материалов, низкие энергозатраты на испарение материалов, простота оборудования, что делает процесс высоко ресурсо- и материалосберегающим, способствует низкой себестоимости покрытий проведение процесса в вакууме, обеспечивающее высокую чистоту покрытия, определяемую лишь технически достижимой глубиной вакуума и чистотой исходного испаряемого материала.  [c.339]


Смотреть страницы где упоминается термин Прочность рабочих лопаток газовых турбин : [c.53]    [c.254]    [c.344]    [c.205]    [c.581]   
Смотреть главы в:

Конструкция и проектирование жидкостных ракетных двигателей  -> Прочность рабочих лопаток газовых турбин



ПОИСК



Газовая рабочих лопаток

Лопатка

Лопатка рабочая

Лопатки рабочие газовой турбины

Прочность лопаток

Прочность рабочих лопаток

Рабочие лопатки турбин

Турбина газовая

Турбинные лопатки

Турбины Газовые турбины

Турбины газовые

Турбины — Лопатки —



© 2025 Mash-xxl.info Реклама на сайте