Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О корректности постановки динамических задач

О корректности постановки динамических задач  [c.155]

Дана корректная постановка задач о динамическом нагружении упругих тел с трещинами, учитывающая возможность контактного взаимодействия берегов и образования областей плотного контакта, сцепления и скольжения. Рассмотрен случай произвольного динамического и гармонического нагружения. Показано, что задачи в такой постановке сводятся к граничным интегральным уравнениям и односторонним ограничениям в виде неравенств. Приведены интегральные уравнения других контактных задач с односторонними ограничениями теории упругости, пластин и оболочек. Дан также краткий обзор литературы по проблемам контактного взаимодействия твердых тел и тел с трещинами.  [c.61]


К исследованию волновых процессов в двумерных системах сводится широкий круг задач о динамических процессах, происходящих в волновых транспортерах и ленточных пилах [5.15,5.16], в скоростных бумагоделательных машинах и при прокате листового металла [34 . Кроме того, сюда же относятся задачи о деформации и рассеянии волн на нестационарных объектах, например, на развивающихся трещинах в твердых телах. Однако двумерные системы изучены значительно слабее одномерных. И в первую очередь, это связано с резким усложнением задач [5.9, 5.13, 5.14], для которых в настоящее время не только отсутствуют рациональные аналитические или численные методы решения, но во многом еще остается открытым вопрос об их корректной математической постановке.  [c.184]

Корректная математическая постановка нелинейной динамической контактной задачи теории упругости для тел с трещинами, учитывающая возможность контактного взаимодействия берегов трещин с образованием областей плотного контакта, сцепления и скольжения.  [c.208]

Любая модель очевидно беднее реального объекта. В усло- виях же указанных ограничений на объем и качество экспериментальной информации для корректной постановки обратной задачи пригодны лишь такие модели, которые, адекватно отражая все наиболее существенные стороны динамического поведения ЯЭУ, были бы как можно более простыми по структуре, как можно более бедными . Этому требованию по большей части удовлетворяют пространственно-независимые (сосредоточенные) модели динамики. Операторы сосредоточенных моделей описывают дифференциальные операции только по временной перемен-floft т. Они могут быть получены путем редукции задач математической физики по пространственым координатам к обыкновенным дифференциальным уравнениям и имеют вид (1.5). Такие модели широко и весьма эффективно используются в различных инженерно-физических приложениях, в том числе и для целей синтеза внешней САУ, которая воспринимает ЯЭУ именно лак сосредоточенный объект (по информации от интегральных датчиков).  [c.173]

В общем случае Динамического нагружения пластины длй корректной постановки задачи кроме уравнений (3.33) и (3.36) должны задаваться и начальные условия w (ж, 0) = w (х), dtw (х, 0) = = w (х), и (х, 0) = dfU (х, 0) = 0. Не уменьшая общности рассуждений М0ЖНО положить W х, 0) = dtW (х, 0) = 0 общий случай рассмотрен в [I35I.  [c.77]

Сделаем несколько замечаний, касающихся физической интерпретации функций, принадлежащих рассмотренным выше функциональным пространствам. При классической постановке задач теории упругости все величины, характеризующие напряженно-деформированное состояние, должны выражаться достаточно гладкими функциями [299, 373, 505, 571]. Функциональные пространства гладких функций имеют достаточно] простой физический смысл. Физические величины, описываемые такими функциями, непрерывны и обладают непрерывными производными до некоторого порядка. К сожалению, в большинстве встречающихся на практике случаев это требование не выполняется и корректного решения таких задач в классической постановке не существует. Для математического Исследования и разработки эффективных методов решения таких задач рассматриваются яеклассические (слабые) формулировки. В этом случае все известные и неизвестные величины предполагаются принадлежащими пространствам Соболева с индексом из множества действительных чисел. Эти функциональные пространства, в частности, содержат и гладкие функции. Такой подход к задачам динамической теории упругости впервые применялся в [354], .  [c.87]


Разработанные в предыдущей главе методы решения динамических контактных задач теории упругости с односторонними ограничениям для тел с трещинами используются здесь,при решении задачи о взаимодействии гармонической плоской волны растяжения — сжатия с трещиной конечной длины в плоскости. Как показано в работах [ 105, 130, 134], для корректной формулировки таких задач необходимо учитывать контактное взаимодействие берегов трещины. Приведены уравнения и формулы, дающие математическую постановку рассматриваемой задачи. Эти уравнения являются следствием общих уравнений, полученных в предыдущих главах. Приведены также численные примеры и иследованьь количественные и качественные эффекты, вызванные контактным взаимодействием берегов трещины.  [c.159]

Разработанные в предьщущих главах методы решения динамических контактных задач теории упругости с односторонними ограничениями для тел с трещинами в этой главе используются при решении задачи о взаимодействии плоской волны растяжения — сжатия с двумя колинеарными трещинами конечной длины в плоскости. Как показано [106, 135, 139], для корректной формулировки этой задачи необходимо учитывать контактное взаимодействие берегов тре1цины. Приведены уравнения и формулы, дающие математическую постановку рассматриваемой задачи. Эти уравнения являются следствием общих уравнений, полученных в пятой и шестой главах. Используются также некоторые формулы и результаты седьмой главы. Приведены численные результаты и исследованы количественные и качественные эффекты, вызванные контактным взаимодействием берегов трещин.  [c.185]

Остановимся подробнее на получении системы интегро-функциональ-ных уравнений контактной задачи. Использование принципа суперпозиции предполагает возможность получения аналитического решения краевой задачи динамической теории упругости с однородными граничными условиями в напряжениях для составляющих многослойную область с каноническим включением элементов. Таковыми являются однородный упругий слой, однородное упругое полупространство, полость в безграничном пространстве и упругое включение, граница которого тождественна границе полости. Решение задач для однородного слоя (полупространства) строится методом интегральных преобразований с использованием принципа предельного поглощения и может быть получено в виде контурного несобственного интеграла [2,4,14]. В зависимости от постановки задачи (пространственная, плоская, осесимметричная) получаем контурные интегралы типа обращения преобразования Фурье или Ханкеля [16]. Решение задачи для пространства с полостью, описываемой координатной поверхностью в ортогональной криволинейной системе координат, получаем в виде рядов по специальным функциям (сферическим, цилиндрическим (Ханкеля), эллиптическим (Матье)) [17]. При этом важно корректно удовлетворить условиям излучения, для чего можно использовать принцип излучения. Исключение составляет случай горизонтальной цилиндрической полости при исследовании пространственной задачи. Здесь необходимо использовать метод интегральных преобразований Фурье [16] вдоль образующей цилиндра и принцип предельного поглощения [3] для корректного удовлетворения условиям излучения энергии вдоль образующей.  [c.312]


Смотреть страницы где упоминается термин О корректности постановки динамических задач : [c.6]   
Смотреть главы в:

Нестационарные упругие волны  -> О корректности постановки динамических задач



ПОИСК



656 —• Постановка задачи

Задача корректная

Задачи динамические

К постановке зг ачи

Корректная постановка задачи

Корректность задачи

Корректность постановки задач

Постановка задач динамического



© 2025 Mash-xxl.info Реклама на сайте