Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип наименьшего времени в оптике

Принцип наименьшего времени в оптике  [c.12]

ПРИНЦИП НАИМЕНЬШЕГО ВРЕМЕНИ В ОПТИКЕ 15  [c.15]

Принцип Якоби является фундаментальным принципом механики. Если ограничиться случаем одной частицы, то линейный элемент ds совпадает с линейным элементом обычного трехмерного пространства в произвольных криволинейных координатах. Принцип Якоби в этом случае оказывается механическим аналогом принципа Ферма наименьшего времени в оптике, согласно которому оптический путь светового луча определяется минимизацией интеграла  [c.162]


Резюме. При параметрическом задании движения время является дополнительной координатой, которая может принять участие в процессе варьирования. Импульс, соответствующий временной координате, является полной энергией, взятой с обратным знаком. Для склерономных систем время становится циклической координатой, а соответствующий импульс — константой. Это приводит к теореме сохранения энергии для консервативных систем. Исключение времени как циклической координаты позволяет сформулировать новый принцип, определяющий лишь путь механической системы, а не ее движение во времени. Это — принцип Якоби, аналогичный принципу Ферма в оптике. Этот же принцип может быть сформулирован как принцип наименьшего действия . В последнем случае интеграл по времени от удвоенной кинетической энергии минимизируется с дополнительным условием, что при движении и вдоль истинного, и вдоль проварьированного пути должна выполняться теорема о сохранении энергии. Если этот принцип рассматривать с помощью метода неопределенных множителей, то в качестве результирующих уравнений получаются уравнения движения Лагранжа.  [c.165]

Эго уравнение представляет частный случай уравнения Гамильтона (21) 110. Эти уравнения имеют важное значение в гамильтоновом изложении геометрической оптики. Конечно, физический смысл функции U в волновой теории света другой, там она измеряет время распространения, а не. действие". В соответствии с этим основанием формулы служит тогда вместо принципа наименьшего действия" принцип. наименьшего времени", который сформулировал Ферма ( 111).  [c.274]

Для того чтобы решить эту задачу, надо воспользоваться новой математикой, в первую очередь аналитической геометрией Декарта. Первым применил этот метод к геометрической оптике Малюс. Однако метод Гамильтона имеет более общий характер. Вводя одну функцию, которая полностью характеризует оптическую систему, Гамильтон указывает Функция, которую я. .. полагаю в основу своего метода дедукции в математической оптике, представлялась прежним авторам в другой связи выражением результата весьма высокой и обширной индукции она называется законом наименьшего действия, а иногда принципом наименьшего времени и заключает в себе все, что было до сих пор открыто относительно правил, определяющих форму и положение линий, по которым распространяется свет, и изменений направления этих линий, вызываемых отражением или преломлением, обычным или необычным. Некоторое количество, являющееся в одной теории действием, а в другой — временем, затрачиваемое при переходе от любой одной точки к любой другой, оказывается меньшим, если свет идет своим фактическим путем, а не каким-нибудь иным, или же, по крайней мере, имеет то, что на языке специалистов называется вариацией, равной нулю ).  [c.810]


Итак, принцип кратчайшего времени был сформулирован и продемонстрирован в геометрической оптике. Немедленно и закономерно возникла проблема отыскания аналогичных задач с минимальным значением времени в механике. Рассмотрение одной из них связано с возникновением вариационного исчисления привело в дальнейшем к формулированию вариационного принципа в механике. Более широкая постановка таких задач связана с проблемой определения кривой при условии, что некоторая величина, связанная с ее формой, имеет максимум или минимум, т. е. отысканием кривой, обладающей некоторым свойством максимума или минимума. Первой задачей такого рода была задача, приведенная Ньютоном в его Началах (книга II, секция VII, предложение 34) какую форму надо придать твердому телу вращения, движущемуся вокруг оси, для того, чтобы испытываемое им сопротивление было наименьшим Решение задачи он привел без указания способа, которым оно было найдено.  [c.781]

Развитая Лагранжей точка зрения на принцип наименьшего действия разделялась рядом ученых того времени. Например, Лаплас, который расширил сферу приложения принципа в оптике, применив его к преломлению света в кристаллах, говорит о механическом содержании этого принципа Интеграл живой силы системы, умноженный на элемент времени, есть минимум, так что, следовательно, истинная экономия природы есть экономия живой силы ). Ограниченность этого толкования в настоящее время, после работ Гамильтона, Гельмгольца и др., после теории относительности и квантовой механики совершенно очевидна.  [c.800]

Переход к новому типу каузальной связи, который условно можно было бы назвать <(Квантовым и который характерен для квантовой (нерелятивистской и релятивистской) механики, где уже классические величины заменяются операторами, где вероятность состояния индивидуальной частицы и индивидуального акта взаимодействия имеет, как известно, совсем иной смысл, чем вероятность состояния ансамбля в классической статистической механике, приводит к тому, что положение и роль принципа Гамильтона оказываются в квантовой механике совершенно иными, чем в классической физике. Важная историческая роль, сыгранная принципом и оптико-механической аналогией в начальной стадии формирования волновой механики, объясняется не только тем, что существует реальная связь и предельный переход от механики атома к классической физике, но также и тем, что существуют общие черты в типах каузальной связи макро- и микрокосмоса. Но именно потому, что для энергии и времени, так же как для импульса и соответствующей координаты, в квантовой механике имеют место перестановочные соотношения, а сами они являются уже операторами, классический интеграл Гамильтона (и принцип наименьшего действия) имеет в ней не-  [c.873]

Через восемь лет после выхода Механики Эйлер обогатил науку первым точным выражением принципа наименьшего действия. Идея этого принципа зародилась в оптике П. Ферма (1601—1665) в 1662 г. вывел закон преломления света, исходя из принципа кратчайшего времени. Затем эта идея была воспринята И. Бернулли (1667—1748), а в 1744 г. ее развил применительно к механике П. Мопертюи (1698—11759). Принцип Мопертюи гласит когда в природе происходит некоторое изменение, количество действия, необходимое для этого изменения, является наименьшим возможным. Свой принцип Мопертюи обосновывал с помош ью метафизических и теологических доводов.  [c.185]

Вариационное исчисление имеет обширную область приложений в математической физике благодаря тому, что физическая система часто ведет себя таким образом, что некоторый функционал, зависящий от ее поведения, принимает стационарное значение. Иначе говоря, уравнения, описывающие физические явления, часто являются условиями стационарности некоторой вариационной задачи. Типичным примером является принцип Ферма в оптике. Он состоит в том, что луч света между двумя точками проходит по пути, который Требует наименьшего времени. Отсюда непосредственно следует вывод, что в любой однородной среде свет распространяется по прямой.  [c.15]

Рассмотрим одно утверждение геометрической оптики, аналогичное по своему содержанию рассмотренным в этой главе принципам механики. Речь идет о принципе Ферма ). В принципе Ферма утверждается, что луч света в оптически неоднородной среде распространяется вдоль кривой, которой соответствует наименьший промежуток времени, необходимый для прохождения света между двумя фиксированными точками упомянутой среды.  [c.208]


Резюме. Механические траектории консервативных систем могут быть получены из частного решения уравнения в частных производных Гамильтона — Якоби с помощью построения ортогональных траекторий к поверхностям S = onst. Это построение аналогично построению волнового фронта и световых лучей в геометрической оптике. Поверхности равного времени в оптике соответствуют поверхностям равного действия в механике, а принцип наименьшего времени Ферма — принципу наименьшего действия или принципу Якоби. И оптические и механические явления могут быть описаны как с помощью волн, так и с помощью частиц. При описании с помощью волн мы оперируем с бесконечным семейством поверхностей, которое определяется уравнением в частных производных Гамильтона. При описании же с помощью частиц мы оперируем с ортогональными траекториями к этим поверхностям, и они определяются принципами. Ферма и Якоби. Аналогия распространяется только на траектории механических частиц, не касаясь того, как движение происходит во времени. Кроме того, ири этой аналогии среди всех возможных механических траекторий выделяются те, по которым движение начинается перпендикулярно к заданной поверхности.  [c.314]

Из основателей новой философии следует отметить Рене Декарта ( 596— 1650 гг.), который сформулировал взгляды на природу света на основе метафизических представлений [8]. Декарт считал, что свет—это сжатие, распространяющееся в идеально упругой среде (эфире), которая заполняет все пространство, а различие цветов он объяснял вращательными движениями частиц этой среды с различными скоростями. Однако только после того, как Галилео Галилей ( 564—1642 гг.), развивая механику, продемонстрировал мощь своего экспериментального метода, оптика получила прочную основу. Закон отражения был известен еще грекам закон же преломления света был экспериментально установлен в 1621 г. Веллебродом Снеллиусом ) (1591— 1626 гг.). В 1657 г. Пьер Ферма (1601 1665 гг.) выдвинул свой знаменитый принциц наименьшего времени ) в следующей форме Природа всегда следует наикратчайшему пути . В соответствии с этим принципом свет распространяется по пути, требующему наименьшего времени отсюда, а также  [c.15]

В оптике существует фундаментальный закон, вытекающий из принципа наименьшего времени Ферма, в соответствии с которым в любой среде все лучи, исходящие из точки X. и приходящие в другую точку Y, перемещаются от X до У ла одно и то же время, независимо от пройденного иути. Применив его к волокну, можно видеть, что если было бы возможно найти такой профиль показателя преломления сердцевины, который обеспечивал бы постоянство г,, и Ф и равенство их для всех значений Е и /, то это означало бы, что волокно с таким профилем было бы свободно от межмодовой дисперсии. Известно, что таких профилей не существует. Однако изменение 2 и Ф в пределах диапазона значений Е и / для лучей, распространяющихся в волокне, является мерой дисперсии волокна.  [c.163]

Для обоснования геометрической оптики применяют различные постулаты, или принципы. В частности, используют принцип наикратчайшего оптического пути (или наименьшего времени), сформулированный Ферма в середине XVII в. Покажем, что этот принцип следует из уравнений электромагнитной теории  [c.274]

Нахождение траекторий лучей света в приближении геометрической оптики можно сформулировать как задачу вариационного исчисления, если воспользоваться принципом Ферма, согласно которому свет распространяется между двумя точками по такому пути, который требует для прохождения наименьшего времени. Принцип наикратчайшего оптического пути, сформулированный Пьером Ферма в середине XVII в., можно получить как следствие основного уравнения геометрической оптики (7.5). Рассмотрим некоторую область с показателем преломления п(г), через каждую точку которой проходит только один луч (например, от точечного источника), т. е. эти лучи в рассматриваемой области не пересекаются. Пусть точки А В (рис. 7.3, а) лежат на одном луче. Используя уравнение (7.5) пъ = = 5(г), вычислим следующий интеграл вдоль произвольной кривой, соединяющей точки Л и В  [c.333]


Смотреть страницы где упоминается термин Принцип наименьшего времени в оптике : [c.22]    [c.281]    [c.804]   
Смотреть главы в:

Исследования по 5-оптике  -> Принцип наименьшего времени в оптике



ПОИСК



Принцип наименьшею времени



© 2025 Mash-xxl.info Реклама на сайте