Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние твердого раствора

Влияние твердого раствора основы. Установлено, что максимальной жаропрочностью обладают сплавы, структура которых состоит из насыщенного твердого раствора и упрочняющих составляющих — карбидов или металлических соединений. Такая структура характерна для сплавов весьма сложного состава, содержащих определенные легирующие элементы.  [c.201]

Для повышения сопротивляемости окислению сплавов на основе карбида титана (Т1С—Со. Т1С—N1) к ним добавляют также твердые растворы карбидов ниобия, тантала и титана. Влияние твердого раствора карбидов ЫЬС—ТаС—Т1С на окалиностойкость твердого сплава Т1С—Со приведено на фиг. 62.  [c.113]


Фиг. 62. Влияние твердого раствора карбидов Nb —ТаС—Ti на окалиностойкость металлокерамического сплава Ti —Со при 980 . продолжительность испытаний 64 ч [13]. Фиг. 62. Влияние твердого раствора карбидов Nb —ТаС—Ti на окалиностойкость <a href="/info/168328">металлокерамического сплава</a> Ti —Со при 980 . продолжительность испытаний 64 ч [13].
ВЛИЯНИЕ ТВЕРДОГО РАСТВОРА  [c.231]

В зависимости от скорости охлаждения с температур, лежащих выше линии SE, углерод частично или полностью выделяется из твердого раствора в виде карбидов. Этот процесс оказывает решающее влияние на свойства сталей. При быстром охлаждении (закалке) распад твердого раствора не успевает произойти, и аустепит фиксируется в пересыщенном и неустойчивом состоянии. Количество выпавших карбидов хрома, помимо скорости охлаждения, зависит и от количества углерода в стали. При его содержании меиее 0,02—0,03%, т, е. ниже предела его растворимости в аустените, весь углерод остается в твердом растворе.  [c.283]

Особо сильное влияние оказывают элементы — неметаллы с малым атомным радиусом и образующие с молибденом, вольфрамом, ниобием, танталом и др. твердые растворы внедрения, имеющие к тому же существенно изменяющуюся растворимость по температуре. Это приводит к выделению соответствующих  [c.523]

Влияние указанных примесей, находяш,ихся в твердом растворе, на прочностные характеристики молибдена и вольфрама мало заметно, вследствие их малой растворимости.  [c.527]

Обычными примесями в техническом никеле являются кобальт, железо, кремний, медь. Эти примеси не оказывают вредного влияния, так как образуют с никелем твердые растворы. При содержании углерода свыше 0,4% но границам зерен выделяется графит, что вызывает снижение прочности металла. Сера является вредной примесью, образующей с никелем сульфид N 382, который дает с никелем эвтектику с температурой плавления 625°С. Кислород, присутствующий в металле в виде NiO, при малом его содержании не сказывается на свойствах металла.  [c.256]

Способ получения титана и степень его чистоты оказывают существенное влияние на механические свойства металла особенно сильно влияет наличие в титане и его сплавах примесей кислорода, азота и водорода. Эти примеси способны давать с титаном твердые растворы внедрения, повышающие твердость, предел прочности и сильно снижающие пластические свойства металла. Наиболее пластичным и наименее прочным является титан, получаемый йодидным способом.  [c.278]


Влияние легирующих элементов на полиморфные превращения железа. Все элементы, за исключением углерода, азота, водорода и отчасти бора образуют с железом твердые растворы замещения.  [c.131]

Легирующие элементы N1, Со, Мп и др., которые не образуют карбидов и находятся в твердом растворе феррита, почти не влияют на процессы отпуска, протекающие как и в углеродистой стали. 51, не являющийся карбидообразующим элементом и растворимый в а-фазе, хотя и не изменяет природы фазовых превращений при отпуске, однако смещает их вверх вследствие замедляющего влияния С на диффузию.  [c.169]

Все легирующие элементы и примеси по их действию на Т1 в отношении характера твердого раствора, влияния на температуру и скорость полиморфного превращения можно классифицировать по схеме рис. 12.19. Элементы внедрения относятся к вредным примесям, а элементы замещения — к полезным легирующим добавкам. Легирующие элементы или растворяются в Т1, или образуют металличе-  [c.193]

Влияние термической обработки на жаропрочность сплавов происходит в результате дисперсионного твердения. Дисперсионное твердение связано со старением пересыщенных твердых растворов, сопровождающимся выделением мелкодисперсных включений упрочняющих фаз (карбидов, нитридов). Эти упрочняющие фазы присутствуют как в виде раздробленных крупных частиц по границам зерен, так и в виде равномерно рассеянных внутри зерен мельчайших частичек (рис. 13.5), повышающих сопротивление пластической деформации при высоких температурах, т. е. повышающих жаропрочность.  [c.202]

Добавление карбида Т1С взамен части карбида W уменьшает коэффициент трения пары сплав-сталь. Такое же влияние оказывает и введение других карбидов тугоплавких металлов, кристаллизующихся, как и Т1С, в решетке К8 (ТаС, Nb ). В результате взаимодействия Т1С и " УС образуется твердый раствор этих карбидов на основе Т1С.  [c.256]

При нагреве сплавов, находящихся при комнатных температурах в состоянии стабильного равновесия в виде смеси фаз, происходит фазовое превращение, заключающееся в растворении избыточной фазы. Этим превращением подвержены сплавы с переменной ограниченной растворимостью, образующие при высоких температурах ненасыщенные твердые растворы. На температуру и интенсивность растворения оказывают влияние размеры и форма частиц избыточной фазы. Чем дисперснее частицы, чем больше радиус кривизны поверхности частиц, тем быстрее они растворяются. Плоские иглообразные частицы растворяются скорее, чем сферические. В условиях ускоренного нагрева, например при сварке, температуры начала и конца растворения существенно повышаются.  [c.501]

Влияние примесей на подвижность границ чрезвычайно сложно. В ряде случаев примеси, концентрируясь на границах, суще-щественно снижают их подвижность. В сплавах типа твердых растворов скорость миграции границ практически всегда на не-  [c.505]

Для установления влияния фуллеренов на кристаллизацию сплавов был проведен анализ количества фуллеренов (Ыф) в сплаве (в расчете на 1 г твердого раствора) с использованием характеристических частот ИК - спектра. Данные расчета для изученных сплавов представлены в таблице 3.20.  [c.222]

К первой группе относятся элементы (Ni, Си и др.), которые в основном образуют растворы с ферритом (аустенитом). Эти элементы понижают растворимость углерода в жидком и твердом растворах, что обусловливает их графитизирующее влияние. Влияние этих элементов на эвтектическую кристаллизацию аналогично влиянию кремния. В то же время никель, способствуя графитизации структурно свободных карбидов, тем самым стабилизирует перлит и способствует повышению его дисперсности. Аналогично, но в более слабой степени, влияет на графитизацию медь.  [c.62]

Влияние легирующих элементов на области а- и /j-твердых растворов и фазовые превращения имеет большое практическое  [c.80]

На рис. 36 показано влияние легирующих элементов на механические свойства титана. Одновременное введение нескольких легирующих элементов позволяет получить еще более высокие механические свойства за счет образования сложных твердых растворов и торможения реакций превращения в твердом состоянии.  [c.81]


Влияние хрома в сталях. Хром является ферритообразующим элементом. Он сужает у-область на диаграмме железо-углерод и вместе с тем стабилизирует аустенит, задерживая превращение аустенита в феррит. Предельное содержание хрома, при котором существует еще у-твердый раствор, равно 13%. При концентрации хрома от 30 до 65% из а-твердого раствора, медленно охлажденных железохромистых сплавов выделяется немагнитная 3-фаза.  [c.84]

Металл и степень его чистоты. Влияние энергии дефектов упаковки проявляется и на стадии II. В алюминии при комнатной температуре стадия II упрочнения выражена очень слабо, и стадия / сливается со стадией III. При криогенных температурах все три стадии хорошо выявляются. Напротив, кристаллы меди при /=20° С имеют четко выраженную стадию П. В зависимости от ориентировки она начинается от значений v//=5-f-20% и заканчивается при 7///=15 35%. Начало стадии III связывают с интенсивным поперечным скольжением, которое для меди, обладающей довольно низкой энергией дефекта упаковки, более затруднено, чем для алюминия. Для твердых растворов протяженность стадии II объясняют влиянием добавок на энергию дефекта упаковки,  [c.189]

Взаимодействие дислокаций с точечными дефектами. Упрочнение твердого раствора под влиянием атомных (точечных) дефектов может быть качественно различным. Атомные дефекты можно подразделить на слабо взаимодействующие с дислокациями и сильно  [c.221]

Полезная информация может быть получена и из данных об энергии активации рекристаллизации Qp, входящей в выражение (151). Однако при этом следует учитывать, что на величину Qp оказывает влияние большое число факторов, и определяемое из эксперимента значение Qp, как правило, является эффективной энергией активации совокупности элементарных процессов, протекающих в деформированном сплаве при его нагреве. Трактовка физического смысла величины Qp усложняется тем, что наряду с процессами разупрочнения (перераспределения дислокаций, их частичной аннигиляции и т. д.) в сплавах могут совершаться накладывающиеся на них процессы распада пересыщенных твердых растворов, коагуляции и обратного растворения дисперсных фаз и др. Все эти факторы будут влиять на поведение дислокаций и формирование центров рекристаллизации и соответственно влиять на значение Qp. Поэтому при анализе влияния легирования на эффективную энергию активации рекристаллизации следует учитывать характер процессов, которые могут протекать в том температурном интервале, в котором определялась величина Qp, и как они могли повлиять на условия рекристаллизации.  [c.342]

Упрочнение вызывается увеличением плотности дислокаций под влиянием внешних сил, а также взаимодействием дислокаций между собой. При горячей деформа-дии пересыщенных твердых растворов к этому добавляется упрочнение за счет распада и взаимодействия дислокаций с выделениями.  [c.360]

Белле изучил двухфазную моноклинно-тетрагональную область, содержащую менее 15 мол.% UOg-Наблюдалось разрушение спеков после их выдержки в воде при высокой температуре. По-видимому, температура превращения моноклинной ZrO 2 была понижена из-за влияния твердого раствора UOa в ZrOa и происходило изменение объема -образца при испытании. Это явление в моноклинно-тетрагональных составах системы иОа—ZrOa ограничивает их пригодность в качестве ядерного топлива.  [c.419]

Кислород образует с металлом твердый раствор, вследствие чего анодный процесс тормозится. Влияние окисных пленок этой теорией, сходной с электрохимической адсорбционной теорией, отрицается. Эта теория не объясняет активируюш,его действия хлор-ионов.  [c.309]

Количество меди, содержащейся в твердом растворе алюмн-ииевомедного силава, оказывает большое влияние на значение  [c.168]

Сведения о влиянии различных примесей на точки плавления и затвердевания упоминавщихся выше металлов можно найти в работах по фазовым диаграммам бинарных сплавов [32, 71]. Этими фазовыми диаграммами для очень малых концентраций следует пользоваться с осторожностью, поскольку экспериментальные сведения для сильно разбавленных твердых растворов ненадежны [26]. Солидус и ликвидус обычно просто экстраполируются до пересечения в точке плавления основного компонента. Этот наклон может оказаться ошибочным, если ближайшие экспериментальные точки получены при концентрации дополнительного компонента, равной, например, 5%-  [c.173]

Процесс нарушения когерентности сопровождается уменьшением напряжений температура его окончания является температурой снятия напряжений II рода (стц)- Одновременно снимаются напряжения III рода(стш). Уменьшение блоков а-фазы происходит не только из-за нарушения когерентности решеток, но и вследствие снятия упругих напряжений в результате пластических сдвигов в микрообластях под воздействием значительных упругих напряжений в условиях повышенной пластичности металла. Температуры, при которых происходит дробление блоков, и соответствующие температуры, при которых изменяются механические свойства, могут изменяться под влиянием упругих напряжений кристаллической решетки, определяемых степенью деформации, содержанием С и легирующих элементов. При третьем превращении могут протекать начальные стадии рекристаллизации твердого раствора (а-фазы), деформированного в результате внутрифазового наклепа.  [c.109]

Взаимодействие твердых частиц с электролитом. Влияние твердых частиц на электропроводность электролита было использовано для определения. размера твердых частиц. Принцип Коултера [838] использует изменение сопротивления раствора электролита, залитого между двумя электродами, в отверстии площадью А, при прохождении твердой частицы через это отверстие вследствие взаимодействия с электролитом. Изменение сопротивления электролита АМ определяется выражением  [c.470]

Протекание пластической деформации в микрообъемах двухфазного металла шва (сталь 12Х18Н10Т — аустенит и 8 феррит, сплав АМгб — твердый раствор на основе алюминия и интермсталлидные фалы) носит неоднородный характер, а морфология второй фазы оказывает на нее существенное влияние вне зависимости от материала.  [c.147]


Никель является сильным аутенитообразующим элементом. Железо и никель при затвердевании образуют у-твердый раствор в широком интервале концентраций. Влияние никеля на повышение жаростойкости хромоникелевой стали проявляется в повышении механических свойств при высоких температурах в результате наличия аустенитной структуры, в увеличении плотности оксидной пленки, усилении ее сцепления с основным металлом. Степень влияния никеля на жаростойкость непрерывно увеличивается с ростом температуры.  [c.49]

На свойства жаропрочных сталей углерод в целом оказывает положительное влияние. Его способность к большей растворимости в у-жслезе в твердом растворе по  [c.73]

Наиболее важное значение для разработки титановых сплавов имеют системы из непрерывных /J-твер-дых растворов Ti - Мо (рис. 32) и Ti - V из ограниченных твердых растворов Т1 - А1 (рис. 33) и Т1 -Сг (рис. 34) следует особо отметить систему Ti - А1 вследствие весьма сложного характера взаимодействия алюминия с титаном (см. рис. 33), а также благоприятного влияния алюминия на упрочнение -титановых твердых растворов и повышение жаростойкости титановых сплавов. Система Ti - Сг (см. рис. 34) отличается существованием непрерывных твердых растворов с /3-титаном, образованием из уЗ-твердых растворов соединения Ti f2 и эвтектоидным превращением а + Т1Сг2-  [c.79]

Влияние параметров кристаллической решетки. Следовательно, первым условием образования неограниченного ряда твердых растворов является наличие у основного и легирующих компонентов одинаковых кристаллических решеток. Легирующие элементы первой группы (Fe, Сг, Мо, W) имеют однотипные объемноцентри-рованные кубические решетки (ОЦК).  [c.410]

В том же направлении работали Лохмани Серии (см. [531), исследовавшие температуры перехода разбавленных твердых растворов сурьмы, висмута, кадмия, индия, свинца, ртути и цинка в олове. Во всех случаях наблюдались резкие переходы влияние примесей сказывалось в понижении температуры перехода.  [c.670]

Влияние энергии дефекта упаковки на форму кривых о—е изучают сравнением поведения чистого металла и ряда твердых растворов на его основе, у которых концентрация второго компонента увеличивается, а энергия дефекта упаковки уменьшается. При этом с понижением энергии дефекта упоковки (рис. 141, а) деформирующее напряжение (или сопротивление деформации) увеличивается. Как и для монокристаллов, с повышением температуры начинает преобладать стадия III. На этой стадии дислокации, ранее блокированные препятствиями в своих плоскостях скольжения, оказывзют-  [c.232]

Влияние примесей на твердого раствора при концентрациях, больших, чем соответствующие максимуму, определяется двумя факторами. Во-первых, тем, как примесь, растворенная в объеме кристаллитов, влияет на структуру деформированного состояния, и, во-вторых, тем, как она изменяет прочность межатомных связей и соответственно диффузионную подвижность в недефор-мированном состоянии.  [c.346]


Смотреть страницы где упоминается термин Влияние твердого раствора : [c.671]    [c.189]    [c.129]    [c.199]    [c.220]    [c.110]    [c.131]    [c.174]    [c.464]    [c.210]    [c.947]   
Смотреть главы в:

Материаловедение Технология конструкционных материалов Изд2  -> Влияние твердого раствора



ПОИСК



Влияние pH раствора

Влияние изоморфного замещения и легирующих добавок на структуру твердых растворов НБС

Влияние межкристаллитной внутренней адсорбции на энергию межзеренного сцепления в твердых растворах

Размеры атомов влияние на образование твердых растворов

Раствор твердый



© 2025 Mash-xxl.info Реклама на сайте