Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принципы, методы и методики измерений

ПРИНЦИПЫ. МЕТОДЫ и МЕТОДИКИ ИЗМЕРЕНИЙ  [c.51]

Как видно из определения, в сферу вопросов, рассматриваемых как метрологические, следует отнести физические величины единицы физических величин измерение физических величин принципы, методы и методики измерений средства измерительной техники результаты измерений погрешности средств измерений погрешности измерений обеспечение единства измерений (эталоны, поверочные схемы, метрологическая служба).  [c.4]


Слово метод в Стандарте 5725 охватывает и собственно метод измерений и методику их выполнения и должно трактоваться в том или ином смысле (или в обоих смыслах) в зависимости от контекста. Поскольку Стандарт 5725 указывает, каким образом можно обеспечить необходимую точность измерения, в принципе становится возможным сравнивать по точности различные методы измерений, методики их выполнения, организации (лаборатории) и персонал (операторов), осуществляющих измерения [14].  [c.159]

Изложение метода измерения абсолютной стабильности длины волны газового лазера было отложено до настоящего параграфа, поскольку для полного понимания принципов и методик необходимы сведения, содержащиеся в предыдущих параграфах. Кроме того, ни одним из существующих методов измерить абсолютную частотную стабильность лазера невозможно.  [c.439]

Тензор поворота, как уже отмечалось в п. 2.2.1, может быть много больше тензора относительной деформации. В этом случае его влияние велико небольшая ошибка в определении поворота будет приводить к большой ошибке в определении относительной деформации. Степень свободы в выборе условий, в которых следует проводить измерения, зависит от выбранного метода. Однако, в принципе, какая бы методика не избиралась, вид интерференционной картины определяется не только одним компонентом деформации, на него оказывают влияние оба компонента—-и тензор относительной деформации, и тензор поворота.  [c.132]

Потенциостатический метод получения поляризационных кривых широко используется последние 10—15 лет коррозионистами для изучения электродных процессов на металлах в растворах электролитов. Однако результаты, полученные этим методом, сильно зависят от методики измерения, что не всегда учитывается исследователями. В статье рассматриваются основные принципы и варианты использования потенциостатического метода в коррозионных исследованиях без освещения истории вопроса [1], возможностей метода для выяснения тонкого механизма электродных процессов [2] и его экспериментального оформления для решения конкретных задач, которые должны решаться с учетом современных представлений о механизме коррозии [3—8].  [c.9]

Измерения всегда проводятся по некоторой выбранной перед измерением методике. Но при лабораторных измерениях методика измерений (физический принцип, положенный в основу измерений средства измерений схема их соединения процедура, то есть операции, проводимые во время измерений методика определения погрешности измерений и т. п.) выбирается применительно к конкретному отдельному измерению. В процессе предварительных экспериментов содержание методики можно изменять, если исследователь сочтет это целесообразным. Методика лабораторных измерений не выступает как нечто окончательно установленное, узаконенное, не подлежащее изменениям в процессе измерений. Такое отношение к методикам лабораторных измерений вполне оправдано. В противном случае исследователь не смог бы достигать наилучших требуемых ему результатов. Исследователь — то лицо, которое и разрабатывает методику измерений и проводит измерения, — специалист высокой квалификации в области проводимых исследований он сам решает, какими методами, средствами и- т. п. целесообразно достигнуть нужного результата. В процессе измерений специалист принимает решение  [c.168]


Не предусматриваются требования к точности измерения, например, в ГОСТ 2.106-68, в котором регламентируются требования к программам и методикам испытаний и в ГОСТ 2.114—70, в котором устанавливаются требования к методам контроля (испытаний, анализа измерений). Некоторые НТД, регламентируя методы оценки точности технологических процессов, устанавливают, что измерения контролируемых параметров следует проводить средствами измерений с ценой деления шкалы не более 1/6 допуска на измеряемую величину или не более 1/3 допускаемого отклонения. Это связано с тем, что нередко отождествляются различные по содержанию понятия погрешность измерения , погрешность СИ и цена деления СИ . Обоснование норм точности измерений должно вьшолняться, исходя из заданных требований к достоверности контроля или точности испытаний. Этот принцип апробирован, например, практикой назначения и реализации измерений линейных размеров до 500 мм (ГОСТ 8.051-81). В этом стандарте регламентируются пределы допускаемых погрешностей измерений в зависимости от допусков на изготовление и номинальных размеров.  [c.32]

Методика измерений была тщательно отработана в различных условиях эксперимента [6—8]. Удовлетворительное согласие полученных данных при опробовании метода на Hg и 8п [6] позволяет считать метод вполне надежным. В последнее время на двух установках, работающих по принципу метода узкой перемычки , измерена теплопроводность, число Лоренца, температурный коэффициент электросопротивления Hg и системы ртутно-индиевых амальгам шести разных процентных составов в интервале температур (293—600° К), твердого и жидкого олова в интервале температур (293—1100° К), свинца высокой чистоты (293—1100° К), галлия (280—700° К), индия (293—900° К), теллура (293—1000° К), теллурида  [c.148]

Наиболее простым и распространенным методом измерения электродных потенциалов является компенсационный метод. Измерения этим методом не представляют затруднений по указанному выше режиму. При необходимости фиксировать начальные относительно быстрые изменения потенциалов обычную методику приходится усложнять [254]. Компенсационный метод характерен тем, что измерение электродвижущих сил элементов может быть произведено в условиях, когда ток через них не проходит [255, 256]. Его принцип состоит в том, что электродвижущая сила элемента, одним электродом которого является металл  [c.153]

Приведено описание более 100 различных калориметров. Специальный раздел посвящен проблеме выбора необходимого калориметра для решения поставленной научной задачи. Множество приведенных экспериментальных зависимостей и схем конструкций приборов, а также довольно полное математическое описание принципов измерений позволяют проводить сравнительную оценку различных калориметрических методик. Эго делает книгу необходимой не только для исследователей, занимающихся разработкой методов термического анализа или использующих эти методы в своей научной работе, но и для инженеров, конструирующих промышленные калориметры.  [c.5]

Для измерения М. применяют установки, работающие по принципу механооптич. рычага, позволяющие наблюдать относит, изменения длины образца Ещё большую чувствительность дают радиотехн. и ин-терференц. методы. Распространён также метод проволочных датчиков, в к-ром на образец наклеивают проволочку (с большим уд. сопротивлением), включённую в одно из плеч измерит, моста. Применяются также разл. методики измерения д и н а м и ч. М. (в переменных магн. полях).  [c.12]

П И1 таких гомологических температурах, когда возлит практически не происходит, скорость скольжения можно измерить в процессе деформирования каким-либо способом хорошо отожженных монокристаллов. Первыми такие измерения провели Джонсон и Гилман [39] на монокристаллах фторида лития, а позже Стейн и Лоу [40] на монокристаллах твердого раствора Fe - 3Si. Методика измерений, примененная этими авторами, не может быть использована при высоких гомологических температурах, главным образом, потому, что при таких температурах дислокации могут перемещаться не только скольжением, но и переползанием. Методы высоковольтной просвечивающей электронной микроскопии позволяют наблюдать движение дислокаций непосредственно в процессе ползучести (in situ) при гомологических температурах выше 0,5, что в принципе дает возможность измерить скорость перемещения дислокаций при скольжении, В опубликованных до сих пор работах (например, [41, 42]) не удалось, однако, отличить дислокации, движущиеся скольжением, от дислокаций, перемещающихся переползанием. Следовательно, даже эта методика не дает надежной возможности измерения скорости скользящих дислокаций при ползучести.  [c.28]


Методика измерения поглощения звука в газах в принципе аналогична методике, применяемой при измерениях в жидкостях. Большинство измерений было выполнено при помощи ультразвукового интерферометра. Так, Пильмайер [1565—1567, 1570] уже в 1929—1930 гг. подробно исследовал поглощение звука в воздухе, Og и Оз, пользуясь интерферометром Пирса. Белявская [224] также применяла этот метод при измерении поглощения в воздухе и СОз.  [c.330]

Регистрация искусственной анизотропии является очень чувствительным методом наблюдения напряжений, возникающих в прозрачных телах. Его с успехом применяют для наблюдения за напряжениями, возникающими в стеклянных изделиях (паянных и прессованных), охлаждение которых производилось недостаточно медленно. К сожалению, громадное большинство технически важных материалов непрозрачно (металлы), вследствие чего этот прием к ним непосредственно не приложим. Однако в последнее время получил довольно широкое распространение оптический метод исследования напряжений на искусственных моделях из прозрачных материалов (целлулоид, ксилонит и т. д.). Приготовляя из такого материала модель (обыкновенно уменьшенную) подлежащей исследованию детали, осуществляют нагрузку, имитирующую с соблюдением принципа подобия ту, которая имеет место в действительности, и по картине между скрещенными поляризаторами изучают возникающие напряжения, их распределение, зависимость от соотношения частей модели и т. д. Хотя приводимые выше эмпирические закономерности, связывающие измеренную величину По — и величину напряжения Р, позволяют в принципе по оптической картине заключить о численном распределении нагрузки по модели, однако практическое осуществление таких численных расчетов крайне затруднительно. Несмотря на ряд усовершенствований и в методике расчета, и в технике эксперимента, настоящий метод имеет главным образом качественное значение. Однако и в таком виде он дает в опытных руках довольно много, сильно сокращая предварительную работу по расчету новых конструкций. В настоящее время имеется уже обширная литература, посвященная применениям этого метода.  [c.527]

В координатах амплитуда, частота, время строятся трехмерные изображения магнитных, вибрационных, акустических и электромагнитных полей, изучается пространственное распределение неаддитивных сигналов и т.п. Представляет интерес диагностирование путем измерения ударных процессов, как правило, однозначно характеризующих возникновение дефекта внутри изделия. Метод ударных импульсов позволяет осуществлять диагностирование подшипников на основе регистрации и смену высокочастотных вибраций, обусловленных ударными процессами. Этот принцип реализован в приборе ИСП-1, который не только указьтает на наличие дефекта, но и дает информацию о месте его возниьсновения. Установлено также, что по форме импульса, возникающего от удара падающего пьезопреобразователя на изделие, можно определять механические свойства поверхностного слоя материала изделия, его упругие и пластические деформации. Можно надеяться, что в будущем подобный метод будет успешно конкурировать с широко распространенными в настоящее время методиками контроля твердости изделий на приборах Бринелля, Роквелла и Виккерса.  [c.112]

Голографические методы Д. п. основаны на применении голограмм. Т. к. голограмма несёт информацию о фазе исходной волны, её можно исиоль-зовать для интерференц. измерений вместо самого объекта. Это — важное преимущество, т. к. заменяет ин-терферометрич. измерения на объекте измерениями на голограмме, В принципе, с помощью одной голограммы можно восстановить интерференц. измерения под разными углами и найти пространственное распределение концентрации электронов и др. величин, влияющих на распространение волн в неосесимметричной системе. Методика иногда применяется и в СВЧ диапазоне.  [c.609]

Внедрение инструментальных методов количественного анализа по времени совпало (по-видимому, во многом даже явилось причиной) с началом взаимопроникновения ранее разобщенных систем метрологического обеспечения, используемых в области измерений химического состава и в других видах измерений. Характерное для последнего времени широкое использование общеметрологических принципов и понятий (прежде всего для решения практических задач заводских лабораторий) находит отражение в расширении функций СО и их роли в оценке метрологических свойств методик выполнения измерений, а также при оперативном и статистическом контроле точности рабочих измерений и решении других проблем достижения требуемой точности измерений химического состава.  [c.15]

Как мы видели в разд. 3.5 и 4.3, данные по деформационной зависимости ПФ можно получить либо непосредственным образом, прилагая механическое напряжение и наблюдая изменения частоты дГвА, либо косвенно по осцилляторной зависимости магнитострикции и осцилляциям скорости звука. При использовании первого способа влияние растяжения и сдвига можно определить, комбинируя измерения при гидростатическом сжатии (которое для кубической симметрии эквивалентно просто отрицательному растяжению, но для более низкой симметрии дает комбинацию отрицательного растяжения и сдвига) и при одноосном напряжении, действие которого может быть разложено на растяжение и сдвиг. При косвенном методе деформационная зависимость в принципе может быть полностью определена независимым образом, но если производятся только ограниченные измерения, например измеряется осцилляторная зависимость магнитострикции только вдоль одного направления в образце, то полученная информация эквивалентна той, которую дает непосредственное приложение одноосного напряжения. В этом разделе кратко рассматриваются некоторые из полученных результатов, в частности для тех металлов, поверхности Ферми которых уже обсуждались в данной главе. Мы увидим, что экспериментальные результаты по деформационной зависимости могут быть полезны для понимания зонной структуры, а также что возможности существующих методик использованы пока лишь частично. Более подробное обсуждение можно найти в обзоре [146].  [c.290]


В эксклюзивной хроматографии малая частица может найти убежище от градиента скорости в порах, недоступных для больших частиц. В обоих случаях большие частицы проходят через колонку быстрее, чем меньшие измерения производятся по времени их удержания как функции размера, как и в ГПХ-анализе. Хотя имеется много работ по хроматографическому измерению размеров частиц [45—49], эти методики пока не стали общими и не нашли применения для исследования пигментов. Однако недавно начат выпуск прибора, основанного на этих принципах, Д.ПЯ анализа латексов ( Flow Sizer HD 5600 ), который дает полный анализ распределения по размерам частиц латексов от 30 до 1500 нм с разрешением до 5% от размера частицы. Колонка его содержит катионообменную смолу [50], ограничивая таким образом анализ для анионных латексов. Колонка стабилизируется продолжительным циркулированием элюента, после чего прибор готов к работе. Хотя принцип фракционирования для измерения размера прост, устройство прибора сложное, требующее достаточно мощного мини-компьютера для обработки сигнала детектора. Фракционирование в потоке [51] —метод разделения частиц по размерам, и, следовательно, метод измерения размеров, основанный на использовании поля, воздействующего на суспензию, текущую в узкой трубке (рис. 6.13). Приложенное  [c.187]

Описанная выше техника представляет собой живой метод измерения малых изменений формы объекта, испытывающего некоторое механическое или другое воздействие, и обеспечивает непрерывное наблюдение этих изменений. Другая методика, которая может рассматриваться как дополнительная и позволяет регистрировать только изменение формы, происходящее за фиксированный промежуток времени, заключается в получении дважды экспонированной голограммы. Если иллюстрировать эту методику на примере токарного патрона, то одна экспозиция (в половину нормальной длительности) делается перед за жатием кулачка, а вторая (такой же длительности) после деформации. После обработки голограммы восстановленное изображение оказывается покрытым интерференционными полосами, аналогичными полосам, получаемым в эксперименте с живой интерферограммой. Они часто называются замороженными полосами, поскольку информация об изменении формы, имеющем место в промежутке времени между экспозициями, оказывается зарегистрированной на голограмме в неизменном виде. Прежде чем рассмотреть некоторые метрологические задачи, для решения которых может быть успешно применена голографическая интерферометрия, необходимо кратко остановиться на принципе интерпретации интерферограмм, поскольку этим определяется область применения и ограничения метода. Обращаясь к фиг. 6.5, которая представляет собой сечение некоторой области типичной шероховатой поверхности, предположим, что  [c.185]


Смотреть страницы где упоминается термин Принципы, методы и методики измерений : [c.403]    [c.48]    [c.6]    [c.225]   
Смотреть главы в:

Основные термины в области метрологии  -> Принципы, методы и методики измерений



ПОИСК



Измерение методы

Методика измерений

Методы и методики измерений

Принцип измерений

Принцип метода



© 2025 Mash-xxl.info Реклама на сайте