Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия, полученные методом вакуумного испарения

ПОКРЫТИЯ, ПОЛУЧЕННЫЕ МЕТОДОМ ВАКУУМНОГО ИСПАРЕНИЯ  [c.119]

Сравнение методов алюминирования затруднено из-за различных свойств, толщины и назначения покрытий. В табл. 38 приведены наиболее характерные для каждого из сравниваемых методов данные о толщине покрытий, размерах стальной полосы, скорости движения при металлизации, производительности промышленных агрегатов и т. д. Из анализа данных табл. 38 следует, что наиболее универсальным способом является испарение в вакууме, так как имеется возможность регулировать в широких пределах толщину покрытий, отсутствуют хрупкие диффузионные слои между покрытием и основой, и ее механические свойства не ухудшаются. При равных толщинах покрытия, наносимые в вакууме, обладают меньшей пористостью, чем покрытия, полученные методом электрофореза и погружением в расплав. Адгезия и внешний вид покрытий получаются достаточно хорошими без всякой дополнительной обработки, в то время как при других методах нанесения необходим высокотемпературный отжиг и последующая прокатка стали с покрытием. Вакуумный метод нанесения является наиболее производительным (в расчете на единицу поверхности покрытия), что обусловлено большой скоростью движения полосы и высокой скоростью конденсации паров металла в вакууме.  [c.223]


Молибден и другие тугоплавкие металлы (в частности, вольфрам) обычно испаряют электронно-лучевым нагревом в условиях глубокого вакуума (10 —10- мм рт. ст.). Метод вакуумного напыления имеет следующие недостатки 1) большие потери, напыляемого металла 2) загрязнение покрытия остаточными газами в камере и в исходном металле 3) трудность нанесения толстых покрытий тугоплавких металлов из-за низкой летучести и малой скорости испарения осаждаемого металла 4) сложность нанесения равномерных по толщине покрытий на подложки с рельефной поверхностью 5) недостаточная термическая стабильность покрытия из-за большого различия в температурах зон конденсации и испарения 6) невозможность получения текстурированных покрытий из-за сложности регулирования режима осаждения 7) недостаточная адгезия покрытия 8) пористость покрытия. Вследствие этих недостатков данный метод нанесения молибденовых и вольфрамовых покрытий широко не применяется.  [c.106]

Физическими методами испарения и конденсации можно наносить любые испаряющиеся без разложения вещества. Механизм конденсации насыщенного пара характерен для образования покрытий на инертной поверхности (низкая температура, нерастворимость конденсирующегося вещества в субстрате). При получении покрытий методами термического испарения с последующей конденсацией паров область испарения и область конденсации разделяются пространственно и между ними создается большой градиент температур. Испаряющееся вещество может находиться как в расплавленном (например, А1, 2п, Си, С(1, Ag, РЬ, И, Сг, N1), так и в твердом (например, В, С, 51, Мд, Мо) состояниях. Процесс ведется в вакуумных камерах. Давление остаточных газов в них не должно превышать 6,7-10" Па (5-10 мм рт. ст.). Высокий вакуум обеспечивает прямолинейность траектории полета атомов от испарителя к субстрату ( атомно-молекулярные пучки в вакууме ) и чистоту конденсированного слоя [35].  [c.38]

Одним из перспективных методов создания фольгированных диэлектриков является получение сверхтонкой фольги вакуумным методом (см. п. 3, гл. ХП) или прямое нанесение металлического покрытия на полимер путем испарения и конденсации в вакууме. Преимущества вакуумного метода очевидны уменьшается расход цветных металлов, так как толщина покрытий может регулироваться в широких пределах в зависимости от назначения схемы устраняется необходимость создания промежуточного оксидного слоя, который ухудшает диэлектрические свойства материала, и упрощается общая технологическая схема создания печатных плат за счет уменьшения числа операций. Наряду с листовыми материалами металлизировать можно полимерные пленки, такие как полиэтилентерефталат, полиимид и др.  [c.325]


В последние годы вызвал значительный интерес метод нанесения покрытий на сопловые устройства путем возгонки соединений вольфрама. Указанный метод является практически единственным, с помощью которого можно получить криволинейные тонкостенные детали из вольфрама. Следует различать нанесение тугоплавких покрытий методом возгонки от метода вакуумного осаждения. В последнем случае чистый металл (например, вольфрам) вводится в установку, нагревается до температуры, достаточной для его испарения, а затем конденсируется на холодной детали. В случае же нанесения покрытия методом возгонки, металл, которым хотят покрыть поверхность изделия, вводится в систему в виде летучего соединения. Температура изделия при этом достаточно высокая. Изделие окружается парами соединения металла, часто в смеси с другими газами, и у поверхности изделия происходят химические реакции, в результате которых и происходит осаждение требуемого металла или соединения. Для получения этим методом покрытий из вольфрама обычно используется пиролиз по формуле (Со)б -> Ш г бСо, причем газом-носителем служит водород. Образец или деталь поддерживается при относительно низкой температуре от 350 до 650"С.  [c.201]

ОЛ до 20 мкм. В настоящее время ведутся многочисленные ра- боты по нанесению в вакууме тонких пленок цинка, кадмия, хрома, никеля, титана и др. Вакуумное напыление дает возможность получать двухслойные и многослойные покрытия, например цинковое и алюминиевое. Возможности вакуумного напыления далеко еще не изучены, но можно с уверенностью сказать, что этот метод займет определенное место при нанесении антифрикционных износостойких покрытий. Аппаратура для получения покрытий вакуумным напылением довольно сложна. В камере, в которой производится покрытие, должен быть создан и постоянно поддерживаться вакуум не ниже 10 мм рт. ст. Наносимый в качестве покрытия металл помещается в специальный тигель, называемый лодочкой, изготавливаемый обычно из тугоплавкой керамики. Металл, находящийся в лодочке, нагревается до температуры испарения. Существуют несколько методов нагрева металла высокочастотный, электросопротивлением и электронным лучом. Наиболее эффективен с точки зрения достижения стабильности характеристик испаряемого металла электронно-лучевой метод. Обычно источником электронов в пушке служит вольфрамовый катод. Электроны фокусируются в магнитном поле и направляются в тигель. Характерными параметрами испарителей являются количество испаряющегося металла, необходимая для этого мощность нагрева и срок службы.  [c.120]

Вакуумное конденсационное напыление (осаждение). Покрытие формируется из потока частиц, находящихся в атомарном, молекулярном или их ионизированном состоянии. Для получения потока пара (частиц) используют различные источники энергетического воздействия на материал. Различают формирование потока частиц посредством термического испарения материала, ионным распылением или взрывным испарением - распылением. Соответственно этому вакуумное конденсационное напыление разделяют на методы. При ионизации потока напыляемых частиц реализуется способ ионно-плазменного напыления, а при введении в поток реактивного газа - вакуумное конденсационное напыление.  [c.224]

Применение. Хотя любой металл независимо от его физического состояния может быть испарен, применение этого метода ограничено главным образом размерами вакуумной камеры и временем, необходимым для получения покрытия требуемой толщины. Такие сплавы, как А1—Си, Sn—Си и Ni—Сг, которые не разлагаются иа отдель-  [c.390]

Качество наносимого покрытия зависит не только от типа применяемой аппаратуры и технологического процесса, но и от подготовки покрываемого изделия. Например, при нанесении алюминиевого покрытия для получения блестящего на вид и хорошего по адгезии покрытия необходихмо с поверхности предварительно очищенного листа удалить газы и нагреть лист до температуры 200—250° С. Удаление газов производится при нагреве в вакуумной камере. Метод вакуумного испарения имеет ряд преимуществ высокая производительность, возможность нанесения покрытия регулируемой толщины и практически из любых металлов, возможность получения многослойных покрытий и др. Вместе с тем данным методом можно наносить пленки только чистых металлов, и совершенно исключается нанесение 1многокомпонентных пленок. Учитывая особенности и возможности метода вакуумного испарения, можно указать четыре основных направления использования его для нанесения антифрикционных износостойких покрытий.  [c.120]


Книга посБяш,ена одному из перспективных методов нанесения покрытий — вакуумной металлизации. Изложены основы технологии нанесения алюминиевых, хромовых, кадмиевых и других покрытий на сталь, чугун, алюминиевые и магниевые сплавы и на неметаллические материалы. Особое внимание уделено влиянию условий нанесения покрытий на их адгезию, антикоррозионные и механические свойства. Рассмотрены особенности непрерывных линий нанесения покрытий на полосовую сталь (тепловые режимы процесса, электронно-лучевые пушки для нагрева полосы и испарения металлов, методы улучшения равномерности толщины покрытия и т. д.), а также особенности испарения сплавов в вакууме и методы получения покрытий из сплавов. Рассмотрено использование метода испарения металлов в вакууме для получения тонких и сверхтонких металлических фольг.  [c.2]

В ранних физических исследованиях электрического разряда в газа> при низком давлении экспериментатор часто отмечал металлический осадок на стекле вблизи катода. Позднее был разработан метод для получения покрытия на поверхности, расположенной вблизи катода разрядной трубки, процесс известен под названием вакуумного напыления. Напряжение постоянного тока в 2000 в является достаточной э. д. с. Частицы, вылетающие из катода, содержат главным образом нейтральные атомы, движущиеся со скоростью, соизмеримой со скоростью теплового движения атомов в точке плавления материала катода. Толанский предполагает, что имеется действительно испарение локальных точек на катоде . Вакуум для процесса напыления требуется неточный, достаточно 0,1 мм рт. ст. Аналогичные процессы, известные как термонапыление, требуют давления <10" мм рт. ст., даже 10 или выше 10 . Этим путем получают пленку алюминия на больших телескопических зеркалах. Источником испаряющегося металла может быть Шарик на горячей проволоке или диск на горячей пластинке, а высокий вакуум необходим для того, чтобы обеспечить средний свободный пробег частиц, превышающий расстояние между расплавленным металлом и поверхностью, подлежащей покрытию. Испускаемые частицы имеют размеры атомов. Подробности обоих процессов, которые уже получили промышленное использование в получении исходных осадков на восковых матрицах, для оптических зеркал и ювелирных покрытий, на пластиках и оптических деталях, рассматриваются в статье [8]. Электрическое сопротивление покрытий, превышающее сопротивление основного металла, обсуждено в статье [9]. Если любой из этих процессов использовать для получения слоев, предназначенных для защиты от коррозии, то требует серьезного рассмотрения вопрос  [c.550]

Основными преимуществами вакуумно-дугового технологического процесса применительно к нанесению покрытий на лопатки газовых турбин являются возможность распыления практически любых металлов и сплавов сложного состава высокая энергия плазменного потока, обеспечивающая получение высокой прочности сцепления покрытий, что иногда может привести к отказу от высокотемпературного диффузионного отжига возможность сканирования плазменным потоком с помощью магнитной системы, что позволяет направлять его на любые выбранные участки подложки и способствует нанесению покрытий с высокой равномерностью на крупногабаритные изделия и изделия сложной формы относительно невысокая и регулируемая в процессе нанесения покрытия температура изделия, что не приводит к изменению фазового состава основного металла лопаток и в ряде случаев позволяет отказаться от восстановительной термической обработки, необходимой при других методах нанесения высокий коэффициент использования рабочих материалов, низкие энергозатраты на испарение материалов, простота оборудования, что делает процесс высоко ресурсо- и материалосберегающим, способствует низкой себестоимости покрытий проведение процесса в вакууме, обеспечивающее высокую чистоту покрытия, определяемую лишь технически достижимой глубиной вакуума и чистотой исходного испаряемого материала.  [c.339]


Смотреть страницы где упоминается термин Покрытия, полученные методом вакуумного испарения : [c.100]    [c.288]    [c.270]   
Смотреть главы в:

Износостойкие и антифрикционные покрытия  -> Покрытия, полученные методом вакуумного испарения



ПОИСК



Вакуумное испарение

Вакуумные покрытия

Испарение

Метод испарения

Методы покрытий

Получить, метод

Ф вакуумная



© 2025 Mash-xxl.info Реклама на сайте