Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка статических и динамических задач теории упругости

Исследование динамических задач теории упругости в нелинейной постановке относится к одной из сложных и мало разработанных областей механики твердого деформируемого тела. В то же время существует целый класс задач, в которых на некоторое конечное напряженное статическое состояние накладываются малые динамические возмущения. Это позволяет в строгой постановке строить решение статической задачи, а динамику явлений, основываясь на малости динамических возмущений, исследовать на базе линеаризованных относительно некоторой малой окрестности напряженного состояния соотношений. При этом в полном объеме сохраняется присущая нелинейным задачам специфика постановки краевых задач в зависимости от используемой системы координат и используемых в процессе решения тензорных и векторных величин, описывающих напряженное состояние среды.  [c.34]


Постановка статических и динамических задач теории упругости  [c.205]

Ранее, в первой главе, были приведены общие статические уравнения теории упругости и соответствующие граничные условия. Там же была сформулирована постановка задачи теории упругости. Однако многие воздействия на сооружения носят ярко выраженный динамический характер. Хотя при этом перемещения оказываются обычно небольшими, однако скорости  [c.119]

Если вариационные постановки для основных краевых задач математической физики и теории упругости известны давно, то для задач с односторонними ограничениями сформулированы только в последнее время. Одной из первых на эту тему является работа [379], в которой показано, что контактная задача теории упругости с односторонними ограничениями (задача Синьорини) сводится к вариационному неравенству. В дальнейшем вариационные неравенства и их приложения в механике и физике рассматривались в [26, 71, 85, 115, 167, 216, 283, 376, 381, 486 и др.]. В частности, статические и динамические контактные задачи теории упругости с трением вариационными методами рассматривались в работах [185—189, 326], контактные задачи для тел с трещинами — в [34, 75, 86, 164, 165, 175, 271, 365, 575], линейные и нелинейные контактные задачи теории оболочек — в [229, 310], а граничные вариационные неравенства применительно к решению контактных задач — в [138, 366—368, 432, 510, 534, 540]. Алгоритмы решения вариационных задач с ограничениями в виде неравенств, их теоретическое обоснование и вопросы численной реализации рассмотрены в [72, 111, 338, 420, 475 и др.]. Подробный обзор работ по применению вариационных неравенств в задачах механики твердого деформируемого тела дан в [365].  [c.82]

Постановка задач в теории упругости. Решения указанных систем уравнений должны удовлетворять для статических задач граничные условия, т. е. условия на поверхности деформируемого тела, а для динамических задач дополнительно и начальные условия, т. е. условия в начальный момент времени.  [c.186]

В 8.4 были выписаны общие уравнения статической теории упругости и соответствующие граничные условия, там же была сформулирована постановка задачи теории упругости. В общем случае движение упругого тела происходит во времени и элементы его обладают ускорениями, поэтому более общей будет постановка динамической задачи теории упругости. В декартовых координатах эти ускорения представляют собою вторые производные от неремещений по времени. Применяя иринцип Далам-бера, мы получим уравнения движения упругого тела, добавив к действуюхцим силам Fi силы инерции  [c.430]


D. S hlottmann [2.189, 2.190] (1967) исследует свободные колебания прямоугольных пластин в уточненной постановке. Используется решение статической задачи теории упругости для толстой пластины в форме Буссинеска ). Это решение дополняется учетом динамических эффектов. Предполагается, что массовые силы сосредоточены на боко.вых поверхностях пластины. Силы инерции учитываются как внешние нагрузки в теории пластин Кирхгофа, инерция вращения не учитывается. TaiKHM образом, динамические эффекты учитываются приближенно в граничных условиях. Рассмотрен случай гра-  [c.163]

Динамические задачи об установившемся движении жесткого клина в упругой полосе в дорэлеевском и сверхзвуковом диапазонах скоростей изучены Б. И. Сметаниным [25] и В. М. Александровым и Б. И. Сметаниным [1]. Форма клина выбиралась сообразно физической постановке задачи. Так, при малых скоростях движения впереди вставки бежит трещина, т.е. клин может быть тупым . При сверхзвуковом движении среда обтекает носовую часть тела безотрывно и для сохранения гипотез линейной теории упругости клин выбирается заостренным. Решение первой из этих задач о подвижной полубесконечной вставке постоянной толщины весьма сходно с упомянутым выше случаем статического расклинивания полосы. Оно построено как методом больших Л , так и в виде разложения по полиномам Чебышева I рода, которое оказалось эффективным во всем диапазоне параметра Л. Изучено поведение коэффициента интенсивности напряжений в вершине трещины в зависимости от параметров задачи.  [c.655]

История вопроса, насыщенная дискуссиями и порой драматическая, восходит, конечно, к классическим трудам Л. Эйлера [331 ] о выпучивании упругих сжатых стержней. В фундаментальных монографиях и обзорных работах [4, 46, 51, 52, 60, 85, 103, 104, 116, 130, 134, 189, 194, 204, 206, 222, 240,265, 300, 311, 321] можно найти сведения об эвлюции взглядов на проблему устойчивости, обсуждение различных подходов к постановке задачи — статического, энергетического, метода неидеальностей, динамического метода и областей их применимости, сопоставление экспериментальных и расчетных теоретических результатов, обсуждение путей дальнейшего развития теории и т.д. Следует отметить, что большинство глубоких результатов в задаче устойчивости относится к однородным изотропным оболочкам и получено в рамках гипотезы недеформируемых нормалей. Несмотря на значительные достижения [52, 60, 117, 265 и др. ], задача устойчивости слоистых анизотропных композитных оболочек с ограниченной поперечной сдвиговой жесткостью разработана с меньшей полнотой и требует дальнейших исследований.  [c.59]


Смотреть страницы где упоминается термин Постановка статических и динамических задач теории упругости : [c.267]    [c.8]    [c.468]    [c.468]   
Смотреть главы в:

Теория и задачи механики сплошных сред  -> Постановка статических и динамических задач теории упругости



ПОИСК



469, 470 — Задачи динамические и статические

656 —• Постановка задачи

Динамические задачи теории упругости

Задача статическая

Задача упругости

Задачи динамические

Задачи теории упругости

К постановке зг ачи

МКЭ в статической теории упругости

Постановка задач динамического

Постановка задачи теории упругости

Постановка задачи теории упругости динамической

СТАТИЧЕСКИЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ

Статическая постановка задач

Теория динамическая

Теория статическая

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте