Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие принципы и уравнения механики Принцип Даламбера. Общее уравнение динамики системы

Таким образом получено общее уравнение динамики в четырехмерном пространстве (2.42), которое в классической аналитической механике рассматривается как следствие принципа Даламбера — Лагранжа. Однако применение этого принципа требует идеальности связей, наложенных на систему. Б рассматриваемой системе внутренние связи неидеальны. Все же  [c.27]

Принципы, история которых излагается ниже,— суть принципы кинетостатики, т. е. того раздела механики, в котором задачи динамики (кинетики) несвободной системы точек решаются методами статики. Возможность применить уравнения статики к системе точек, не находящихся в равновесии, основывается на двух принципах, которые часто объединяют под общим названием начала Даламбера. В действительности сначала был разработан принцип, существенно связанный с понятием силы инерции ( Петербургский принцип ), и лишь после этого появился собственно принцип Даламбера, в котором понятие силы инерции совсем не используется. Как будет показано, они переводятся один в другой, чем и объясняется их смещение.  [c.138]


Ж. Лагранж в трактате Аналитическая механика справедливо отмечает, что принцип равенства давлений по всем направлениям... является 1771 основой равновесия жидкостей . Однако сам Лагранж предпринял попытку вывода всех свойств жидкости в состоянии равновесия непосредственно из самой природы жидкостей, рассматривая последние как собрание молекул, сильно разобщенных, независимых друг от друга и способных совершенно свободно двигаться во всех направлениях . Лагранж предпринял новую систематизацию материала гидростатики. Он стремился все закономерности механики вывести чисто математически из единого принципа. Этим единым принципом всей механики Лагранжа была так называемая общая формула динамики (теперь называемая уравнением Даламбера — Лагранжа). В частном случае равновесия системы эта формула переходила в общую формулу статики (принцип возможных перемещений).  [c.177]

I. Исторические замечания. Уравнения движения механических систем можно получать исходя из весьма различных положений, которые могут рассматриваться, как основные принципы механики. Эти принципы должны полностью характеризовать движение системы материальных точек и быть эквивалентными всей системе дифференциальных уравнений движения. Все законы механики системы материальных точек, на которую наложены идеальные связи, могут быть получены из принципа Даламбера — Лагранжа (общего уравнения динамики). Тем не менее представляет интерес преобразовать общее уравнение динамики так, чтобы получить новую форму, эквивалентную этому уравнению, но отличную от него по структуре. Новые формы либо допускают некоторые обобщения, выходящие за рамки чисто механических задач, либо дают возможность получить новые формы дифференциальных уравнений движения. С теоретической точки зрения новые формы в некоторых случаях позволяют обнаруживать некоторые общие свойства системы, которые не всегда очевидны в первоначальной формулировке принципа. Полученный новый принцип может быть принят за основной закон, и из него можно вывести все свойства движения, если только он правильно отображает природу.  [c.500]

Далее существенный этап развития расчетных математических методов в механике связан с именем Даламбера (1717—1783), предложившего простой и общий метод составления уравнения движения системы. Широкое обобщение аналитические методы получили в трудах Лагранжа (1736—1783), выдвинувшего принцип виртуальных перемещений. Расширение принципа виртуальных перемещений мы находим в трудах русского математика М. В. Остроградского (1801 —1861). Вклад в динамику твердого тела внес С. А. Чаплыгин (1869—1947), а в аэродинамику — Н. Е. Жуковский (1847—1921), который был также выдающимся педагогом, ратовавшим за ясное и четкое выделение физической сущности механических задач и их решение.  [c.29]


Р авенство (2) или (3) и представляет собой общее уравнение динамики. Оно получено путем соединения двух общих принципов механики принципа Даламбера с принципом возможных перемещений, связанным с именем Лагранжа. Поэтому общее уравнение динамики иногда называется уравнением Лагранжа — Даламбера. Из него следует, что при любом движении механической системы с идеальными удерживающими связями в каждый данный момент сумма элементарных работ всех активных сил и всех условно приложенных сил инерции на всяком возможном перемещении системы равна нулю. При этом возможные перемещения нужно брать для фиксированного положения системы, соответствующего рассматриваемому моменту.  [c.780]

Перейдем к изучению наиболее общих методов решения задач механики. Эти методы основываются на общем принципе — принципе возможных перемеицений, или принципе Лагранжа, так как Ж. Лагранж первый придал этому принципу законченную форму и положил его в основу статики. Обч единнв этот принцип с принципом Даламбера, Ж. Лагранж получил общее уравнение динамики, из которого вытекают основные дифференциальные уравнения движения материальной системы и основные теоремы динамики ).  [c.107]

Аналитическая динамика начала развиваться в конце XVII— начале XVIII в., в период буржуазной революции в Европе. Торричелли и Бернулли положили начало аналитической статике. Галилей и Ньютон сформулировали основные законы динамики, а в конце XVIII в. Лагранж разработал основы современной аналитической динамики. Весь этот период характеризуется бурным развитием техники и точных наук. В результате появилась потребность к обобщению накопленных знаний, к созданию таких принципов, откуда бы вытекали все основные положения механики. Одним из результатов такого обобщения явился принцип Даламбера — Эйлера — Лагранжа, как наиболее общий принцип механики. Он позволил сформулировать различные задачи о движении в виде системы дифференциальных уравнений.  [c.443]

В последнее время в грактике преподавания теоретической механики в высших технически учебных заведениях происходят значительу-ные изменения. Этому способствует как неуклонное уменьшение времени, отводимого учебными планами на ее изучение (часто меньше ста часов), так и изменение той роли, которая отводится теоретической механике в общей системе образования инженеров современных сие-циальностей. Центр тяжести образования инженеров немеханических специальностей, составляющих большинство, смещается or механических дисциплин в сторону кибернетики и автоматики, радиотехники и радиоэлектроники, химии и энергетики. От современных инженеров сейчас требуется гораздо более высокий уровень теоретической подготовки, чем 10—15 лет назад. С другой стороны, значительно расширяется круг инженеров механических специальностей. Все это приводит к заключению о необходимости углубления и перестройки курса теоретической механики. Традиционный курс, состоящий из статики абсолютно твердого тела, кинематики точки и твердого тела и динамики, в которую входят дифференциальные уравнения движения точки, основные теоремы и принципы Даламбера и возможных перемещений, в свое время соответствовал всем требованиям, которые к нему предъявлялись. По в последнее время его недостатки стали очевидными и неоднократно отмечались. Мы не будем на них останавливаться. Заметим, что перестройка курса должна идти по двум направлениям. Прежде всего он должен быть более компактным и приспособленным к тому, чтобы в краткое время изложить все основ ные идеи и методы. Во-вторых, необходимо его углубление. Центр тяжести курса должен быть смещен от элементарных вопросов статики и кинематики к более содержательным и ценным разделам динамики и аналитической механики. В настоящее время ряд ведущих  [c.72]


Смотреть страницы где упоминается термин Общие принципы и уравнения механики Принцип Даламбера. Общее уравнение динамики системы : [c.146]   
Смотреть главы в:

Курс теоретической механики Часть1 Изд3  -> Общие принципы и уравнения механики Принцип Даламбера. Общее уравнение динамики системы



ПОИСК



70 - Уравнение динамики

Даламбер

Даламбера принцип

Динамика общее уравнение

Динамика системы, общее уравнение

Механика общая

Общая динамика

Общее уравнение динамики системы

Общие принципы

Общие уравнения

Принцип Даламбера Общее уравнение механики

Принцип Даламбера для системы

Принцип динамики

Принципы механики

Системы Динамика

Уравнение Даламбера

Уравнение динамики общее

Уравнение общее механики



© 2025 Mash-xxl.info Реклама на сайте