Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Относительная деформация и вращение поверхности тела

Относительная деформация и вращение поверхности тела  [c.36]

Сущность предварительного натяга заключается в хом, что пару подшипников предварительно нагружают осевой силой, которая устраняет осевой зазор в комплекте, создавая начальную упругую деформацию в местах контакта рабочих поверхностей колец с телами качения. Если затем к подшипнику приложить рабочую осевую нагрузку, то относительное перемещение его колец вследствие дополнительной деформации рабочих поверхностей будет значительно меньше, чем до создания предварительного натяга. Предварительный натяг вызывает одинаковую деформацию в обоих подшипниках. Такие подшипники работают в более тяжелых условиях, так как повышаются нагрузки на тела качения, момент сопротивления вращению и износ, а также снижается ресурс подшипника.  [c.105]


Тензор относительной деформации и тензор вращения, рассмотренные в п, 2.2.1, описывают изменения, которым подвергается (трехмерный) элемент объема. Однако с точки зрения голографии, важно, что происходит на поверхности непрозрачного тела. Следовательно, хотя при некоторых обстоятельствах может быть возможна экстраполяция на внутреннюю часть тела (см. гл. 5), все же важно обратить внимание на двумерные относительную деформацию и поворот на поверхности элемента.  [c.36]

В п. 2.2 получены кинематические зависимости, которые связывают относительную деформацию и вращение с первой производной от вектора смещения. Здесь введем, с одной стороны, уравнения связи для упругого тела, с помощью которых устанавливается зависимость между тензором относительных деформаций и тензором напряжений, и, с другой стороны, дифференциальные уравнения движения или равновесия, которые связывают градиент тензора напряжений с ускорением элемента таким образом, в последнем (имеется в виду ускорение) фактически неявно присутствует вторая производная от смещения. Однако прежде всего обратимся к вопросам кинематики и подсчитаем изменение кривизны поверхности предмета, при этом  [c.154]

Очевидно, а, Ь, с представляют перемещения, соответствующие поступательному движению. Величины т, п, г суть элементарные вращения относительно координатных осей. Если мы к дифференциальным уравнениям равновесия и к условиям на поверхности присоединим еще условия закрепления (см. 10), то сможем определить постоянные а,. .., г и, следовательно, найдем перемещения и, у, 1У, обусловленные деформацией тела.  [c.52]

При рассмотрении в гл. 3 формирования голографических изображений были использованы как первые, так и вторые производные разности фаз. В гл. 4 дан анализ формирования интерференционных полос на основании определения оптической разности хода, а затем, при более подробном ознакомлении рассмотрена первая производная от оптической разности хода. В то же время было показано, как вектор смещения и его первая производная, т. е. тензор относительной деформации и тензор вращения связаны с оптическими величинами и по этой причине могут быть измерены на поверхности непрозрачного тела. Следовательно, поскольку каждый дополнительный порядок производной позволяет получить больщее количество ин-. формации, теперь рассмотрим вторую производную от оптической разности хода, с помощью которой определили вторую производную от смещения. Поэтому сначала кратко остановимся на том, какие механические величины за-висят от этой производной и какие соотнощения будем использовать в дальнейшем. Затем подсчитаем вторую производную от оптической разности хода и отметим в общих чертах некоторые из ее возможных применений,  [c.154]


Для монотонных процессов деформирования, когда главные панравлеппя тензора напряжений или скоростей деформаций совпадают в любой момент времени с одними и теми же материальными волокнами, определяющие соотношения могут быть записаны в терминах главных компонент путем прямого обобщения соответствующих видов реологических законов для малых деформаций [71, 138]. Такие соотношения соответствуют связи между напряжениями, деформациями и их скоростями в прямоугольном ортонормироваином базисе главных направлений, который совершает жесткое вращение относительно неподвижного пространства наблюдателя. Типичным представителем этого класса дефор-мацнй тел является осесимметричное деформирование тонких оболочек вращения в рамка.х обобщенных гипотез Кирхгофа [91, 190], когда на срединной поверхности меридиональное, окружное и перпендпкулярпое к ним нанравления по толщине оболочки в любой момент времени остаются главными нанравлениями для напряжений и деформаций [81, 82].  [c.21]

Другим примером пренебрежимо малого демпфирования может служить вал, вращающийся с большой скоростью и одновременно совершающий крутильные колебания. Так как амплитуды крутильных колебаний малы, соответствующая окружная скорость поверхности вала мала по сравнению со скоростью вращения вала как жесткого тела, и относительная скорость точек соприкосновения с подшипником остается практически постоянной, так что при крутильных колебаниях силы трения сохраняют направление и величину. Эти силы вызывают постоянное закручивание вала, но не создают затухания крутильных колебаний. В этом случае демпфирование почти исключительно зависит от внутреннего трения материала нала. Это внутреннее трение в основном имеет термическую природу ). Температурные изменения, вызванные деформацией ноли-кристаллического металлического образца, меняются от зерна к зерну в зависимости от их кристаллографической ориеитации, и происходит некоторое рассеяние энергии вследствие теплового потока между отдельными кристаллами. Если вызвать последовательные циклы нагрузки и разгрузки, то соответствующие диаграммы испытаний обнаружат петли гистерезиса, площади которых измеряют энергию, рассеянную за цикл. Так как количество тепла, образуемое в любом зерне, пропорционально его объему, тогда как теплообмен определяется величиной поверхности зерна, то очевидно, что с уменьшением размеров зерен теплообмен облегчается и потери механической энергии возрастают. Таким образом, чтобы увеличить демпфирование за счет внутреннего трення, нужно применять материалы, имеющие малые размеры зерна.  [c.71]

На контакт слоя с телом 2 несогласованной формы может также оказывать влияние трение. Даже если упругие постоянные одинаковы (т. е. Е — Е2, vi = V2), ограниченность толщнны слоя приводит к относительному тангенциальному смещению по поверхности контакта, сопротивление которому оказывает трение. В большинстве исследований в настоящее время тем не менее предполагается отсутствие трения на поверхности контакта, а также рассматривается контакт при плоской деформации или осесимметричный контакт тел вращения с круговой областью контакта. Рассмотрим сначала случай плоской деформации.  [c.159]


Смотреть главы в:

Анализ деформаций непрозрачных объектов методом голографической интерферометрии  -> Относительная деформация и вращение поверхности тела



ПОИСК



Вращения поверхность

Деформации относительные

Деформации при вращении

Деформация (относительная) поверхность деформации

Поверхности и тела вращения

Поверхность деформаций

Тела Поверхность

Тело вращения



© 2025 Mash-xxl.info Реклама на сайте