Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ПРИМЕНЕНИЕ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ К РЕШЕНИЮ НЕЛИНЕЙНЫХ ЗАДАЧ

ПРИМЕНЕНИЕ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ К РЕШЕНИЮ НЕЛИНЕЙНЫХ ЗАДАЧ  [c.155]

Коробейников С. Н. Применение метода конечных элементов к решению нелинейных задач по деформированию и потере устойчивости атомных решеток. Новосибирск, 1997. (Препринт/ РАН. Сиб. отд-ние. Ин-т гидродинамики № 1-97).  [c.248]

Так как нелинейная контактная задача, связанная с про цессом смыкания зазоров между верхним и нижним фланцами, требует при применении метода конечных элементов пошагового решения (в приращениях), имеет смысл исполь зовать упругопластическую модель материала. Это не вызовет существенного увеличения стоимости вычислений, но, очевидно, приведет к более надежному определению напряжений.  [c.54]


На современном этапе развития техники все большее значение приобретают нелинейные задачи расчета конструкций (учет больших перемещений, пластических деформаций, расчет закритического поведения силовых элементов и т.д.). Применение метода конечных элементов в этих задачах [61 открывает широкие возможности для их практического решения. Следует, однако, отметить, что разработка теоретических и практических аспектов приложений метода конечных элементов к нелинейным задачам еще далека от завершения, хотя и в этой области налицо определенные успехи. Поскольку расчет носит здесь итерационный характер, решение требует  [c.388]

Отметим, что задачи теории многократного наложения больших упругих и вязкоупругих деформаций, вероятно, могут быть решены любыми методами, которые применимы к решению обычных задач нелинейной упругости или вязкоупругости при конечных деформациях, в том числе и методом конечных элементов (МКЭ), применение которого к решению задач нелинейной упругости при больших деформациях рассмотрено, например, в [67]. Однако при решении задач теории наложения больших деформаций с помощью МКЭ потребуется учесть особенности этих задач, которые упомянуты в конце предыдущей главы.  [c.46]

К настоящему времени закончен первый важный этап развития метода граничных элементов как средства решения прикладных задач на ЭВМ. Основные его итоги подведены в монографии [26]. Суммируя эти итоги, можно заметить, что он ознаменовался, во-первых, систематизацией и представлением теоретических и вычислительных основ МГЭ в форме, доступной для очень широкого круга специалистов. Во-вторых, даны многочисленные яркие примеры, иллюстрирующие большие возможности метода в самых разных сферах приложений в плоских и пространственных, линейных и нелинейных, статических и динамических задачах для однородных и неоднородных, изотропных и анизотропных тел. В-третьих, достигнуто признание практиков, которые теперь быстро овладевают методом, стремятся его использовать, расширяют его применение и не отдают уже безусловного предпочтения методу конечных элементов. В-четвертых, начат переход к хорошо организованным коммерческим программам второго поколения, которые специально предназначены для инженеров-расчетчиков. И наконец, что также немаловажно, на смену первоначальной эйфории от успехов метода вместе с попытками применить его к очень сложным задачам, ранее вовсе не поддававшимся решению, пришло осознание необходимости усилить проработку его численных аспектов с тем, чтобы выявить и классифицировать условия, в которых происходит падение точности и устойчивости счета, и создать арсенал вычислительных приемов для преодоления типичных затруднений.  [c.275]


Многое еще предстоит сделать для совершенствования этого метода и расширения сферы его применения — прежде всего к нестационарным нелинейным задачам, для которых конечно-разностный метод остается пока основным способом получения численных решений. Но достигнутые уже сейчас уровень теоретической обоснованности и широта практических приложений метода конечных элементов делают весьма желательным обучение будущих специалистов по прикладной математике основам этого метода.  [c.5]

Книга посвящена описанию метода конечных элементов и его приложений к широкому классу нелинейных задач механики сплошных сред и строительной механики. Особое внимание уделено решению задач механики твердого тела, однако основы метода изложены с достаточной степенью общности, допускающей применение, например, к нелинейным задачам гидродинамики, электродинамики, теории дифференциальных уравнений в частных производных. Рассмотрены также различные численные методы решения больших систем нелинейных уравнений.  [c.6]

Цоявление ЭЦВМ позволило перейти от поиска решений отдельных упругопластических задач к разработке численны х методов решения широкого класса задач [51. К ним относятся сеточные методы, использующие конечно-разностную аппроксимацию нелинейных дифференциальных уравнений [6], численное интегрирование таких уравнений методом прогонки с ортогона-лизацией решений [71, сведение нелинейных дифференциальных уравнений к интегральным [3, 4, 81, применение метода конечных элементов к физически нелинейным задачам и другие методы [5]. Расчет ведется последовательными прибли,жениями с использованием метода переменных параметров упругости [8]. Каждый из этих методов имеет свои достоинства, однако их реализация для узлов и конструкций в инженерной практике оказывается значительно более сложной по сравнению с упругим расчетом тех же конструкций. Этим объясняется традиционный подход к оценке прочности узлов, работающих в условиях упругопластического деформирования, при котором ограничиваются данными их упругого расчета [1]. При проведении поверочного расчета конструкций нормами рекомендуется определять напряжения в предположении упругого поведения материалов такжё и в том случае, если напряжения,. определенные по расчету, превышают предел текучести. При этом для удобства выполнения расчетов, принятых в инженерной практике, вместо упругопластических деформаций вводятся условные напряжения, определяемые упругим расче том [2].  [c.123]

В книге приводится методологически последовательная постановка геометрически и физически нелинейных задач механики деформируемого твердого тела, в том числе задачи о потере устойчивости и контактных взаимодействиях тел. Уравнения формулируются относительно скоростей или приращений неизвестных величин. Приводятся слабые формы уравнений и вариационные формулировки задач. Рассматривается применение метода конечных элементов к решению квазистатических и динамических задач. Используются следующие модели материалов изотропная линейно-упругм, несжимаемая нелинейно-упругая Муни — Ривлина, упругопластическая, термоупругопластическая с учетом деформаций ползучести. Приводятся процедуры численных решений нелинейных задач, основанные на пошаговом интегрировании уравнений равновесия (движения). Рассматриваются особенности процедур численного решения задач о потере устойчивости и контакте тел.  [c.2]

Во второй книге комплекса учебных пособий на современном научном уровне излагаются основы вычислительных методов проектирования оптимальных конструкций. Рассматриваются вопросы моделирования линейных и нелинейных систем методом конечных элементов. Показано применение метода обратных задач дннамнкп к рснлспню задач синтеза оптимальных систем сиброзащнты и стабилизации. Приводятся методы н алгоритмы построения оптимального управления колебаниями сложных динамических систем. Материал пособия иллюстрируется примерами решения задач с помощью приведенного алгоритмического и программного обеспечения.  [c.159]


Наиболее точный и естественный подход к исследованию патрубковых зон сосудов давления при всем многообразии условий их нагружения заключается в непосредственном использовании трехмерных расчетных схем, принимая во внимание реальные геометрию сосуда, давления, краевые условия и распределение нагрузок. Такой подход оказывается единственно возможным для адекватного моделирования поведения сосудов давления с отношениями 1/4 сравнительного анализа с предьщущей схемой. Его практическая реализация возможна, как, впрочем, и для осесимметричных схем, лишь с использованием численных методов, ориентированных на применение современных ЭВМ. Наиболее универсальным и эффективным для решения подобных задач оказьшается, как это было отмечено вьпие, метод конечных элементов. Вместе с тем использование МКЭ гщя решения трехмерных задач все еще остается проблематичным, особенно для задач нелинейного деформирования конструкций, когда кривая вычислительных трудностей и необходимого машинного времени поднимается, образно говоря, круче кривых напряжения в зоне концентрации сосудов с патрубками.  [c.122]

Решение системы нелинейных дифференциальных уравнений в частных производных классическими способами, т. е. интегрированием с соответствующими граничными условиями, для большинства основных задач невозможно. Поэтому для приведения непрерывной задачи к дискретному виду и ее решения требуются методы численного анализа. Значения неизвестных определяются на большом, но конечном числе узлов как в пространстве, так и по времени, чтобы получалось по возможности точное решение уравнений. В программе FIELDAY используются метод конечных элементов для уравнения Пуассона комбинированный метод (конечно-разностный/ко-нечных элементов) для уравнений непрерывности [16.10]. Скорость изменения плотности подвижных носителей во времени аппроксимируется по методу Эйлера. Полученные уравнения линеаризуются затем одним из двух методов. Первый предусматривает разделение системы трех дискретных уравнений уравнения решаются последовательно [16.11]. Применение второго, более сложного метода подразумевает одновременное решение всех уравнений с линеаризацией по методу Ньютона [16.12, 16.13]. Оба метода приводят к матричным уравнениям большой размерности с сильно разреженными матрицами для получения окончательного результата эти уравнения необходимо решать многократно.  [c.464]


Смотреть страницы где упоминается термин ПРИМЕНЕНИЕ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ К РЕШЕНИЮ НЕЛИНЕЙНЫХ ЗАДАЧ : [c.254]    [c.218]    [c.187]    [c.134]    [c.9]    [c.381]   
Смотреть главы в:

Нелинейное деформирование твердых тел  -> ПРИМЕНЕНИЕ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ К РЕШЕНИЮ НЕЛИНЕЙНЫХ ЗАДАЧ



ПОИСК



Задача и метод

Задачи и методы их решения

Конечный элемент

Метод конечных элементов

Методы нелинейного

Нелинейные задачи

Нелинейных задач методы решения

Применение метода

Решение нелинейных задач

Решения метод

Элемент Применение



© 2025 Mash-xxl.info Реклама на сайте