Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы синхронизации мод

Н, л. работают в широком диапазоне режимов генерации, от непрерывного до существенно импульсного с длительностью, достигающей 0,5 пс. Последняя достигается методом синхронизации мод в широкой линии усиления, характерной для лазерных стёкол.  [c.320]

Методы синхронизации мод можно разделить на две категории 1) активную синхронизацию мод, при которой потери или усиление лазера модулируются внешним управляющим сигналом, и 2) пассивную синхронизацию мод, создаваемую соответствующим насыщающимся поглотителем  [c.312]


Главную часть предлагаемой книги составляют гл. 4—7, в которых описаны различные методы синхронизации мод. Каждая глава начинается с раздела, содержащего простую трактовку рассматриваемого вопроса. Затем следует систематическая теория работы лазера, излучающего ультракороткие световые импульсы, причем особое внимание обращено на определение оптимальных условий и расчет параметров, которые могут быть измерены. Заканчивается глава представлением типичных экспериментальных результатов, которые сравниваются с теорией.  [c.11]

Комбинированный метод синхронизации мод. Свойства сверхкоротких световых импульсов, получаемых при пассивной синхронизации (самосинхронизации) мод, отличаются от свойств импульсов, получаемых при активной синхронизации. При пассивной синхронизации удается реализовать длительность импульса, близкую к предельной длительности, определяемой шириной линии усиления. При активной же синхронизации длительность импульса оказывается существенно больше (на порядок и выше). С другой стороны, при пассивной синхронизации время появления последовательности сверхкоротких световых импульсов может флуктуировать в пределах до 10—100 мкс параметры импульсов воспроизводятся от одного импульса накачки к другому лишь с некоторой вероятностью. Импульсы же, получаемые при активной синхронизации, характеризуются высокой стабильностью параметров.  [c.383]

Оптимальные результаты ищутся на пути, использующем комбинированный метод синхронизации мод. В этом случае внутри резонатора помещают просветляющийся филЬтр и синхронизатор мод активного типа используется также со-  [c.383]

Более подробно изучается режим синхронизации мод, включены новые разделы, касающиеся лазеров с разгрузкой резонатора и методов сжатия оптического импульса.  [c.8]

Не вдаваясь на этом этапе в какие-либо детали, заметим лишь, что при помощи специального метода, называемого синхронизацией мод, можно получить импульсы света, длительность которых приблизительно обратно пропорциональна ширине линии перехода 2- 1. Например, в газовых лазерах, ширина линии усиления которых относительно узкая, можно получать импульсы излучения длительностью 0,1 —1 не. Такие импульсы не рассматриваются как очень короткие, поскольку даже неко-  [c.22]

ОКОЛО ОДНОГО ИЗ зеркал резонатора и если До> = Ди, то фазы мод опять становятся синхронизованными, хотя соотношение между ними отличается от (5.106). Тем не менее мы снова получаем короткие импульсы длительностью порядка обратной ширины спектра генерации. Поскольку оптическая длина модулятора равна = , где L —его истинная длина, этот тип модулятора производит модуляцию эффективной длины резонатора. Вследствие этого модулируются и его резонансные частоты, отчего данный метод синхронизации часто называют частотно-  [c.316]


КИМ образом, чтобы период повторения импульсов 2L/ был равен периоду следования импульсов лазера накачки. Тогда импульсы накачиваемого лазера будут синхронизованы с импульсами лазера накачки, и поэтому данный метод называют синхронизацией мод при синхронной накачке. Этот тип накачки можно также осуществить в полупроводниковом лазере, пропуская через диодный переход ток в виде импульсов с частотой повторения /2L, где L — длина резонатора полупроводникового лазера. В обоих случаях зависимость усиления лазера от времени при такой импульсной накачке имеет вид, показанный  [c.317]

В случае непрерывного лазера с модуляцией добротности метод разгрузки резонатора можно использовать периодически для получения цуга ультракоротких импульсов, частота следования которых равна теперь частоте работы устройства разгрузки, а не частоте повторения /2L, устанавливаемой временем полного прохода резонатора. Если эта частота достаточно низка (100 кГц—1 МГц), то соответствующий промежуток между двумя последовательными разгрузками резонатора (1 — 10 мкс) обеспечивает достаточное время для восстановления синхронизации мод. Поэтому метод периодической разгрузки резонатора позволяет получить последовательность ультракоротких лазерных импульсов при намного более низкой частоте  [c.324]

В этой главе мы рассматривали непрерывный и переходный режимы работы лазера в первом приближении, а именно с помощью (пространственно усредненных) скоростных уравнений. Для повышения точности (и сложности) необходимо использовать следующие подходы 1) Скоростные уравнения, в которых учитываются пространственные изменения как инверсии, так и плотности электромагнитной энергии. Этот метод обсуждается в Приложении Б. 2) Последовательное полуклассическое рассмотрение, в котором среда квантуется, а электромагнитные поля резонатора описываются классически, т. е. с помощью уравнений Максвелла. Можно показать [1], что в непрерывном режиме соответствующие уравнения сводятся к скоростным. Это же справедливо и в переходном режиме, если продолжительность любого переходного процесса много больше обратной ширины лазерного перехода. Следовательно, все нестационарные случаи, рассмотренные в этой главе (за исключением синхронизации мод), могут быть адекватно рассмотрены в рамках приближения скоростных уравнений. 3) Полностью квантовый подход, при котором квантуются как среда, так и излучение. Это, рне сомнения, наиболее полное рассмотрение из всех. Оно необ-  [c.326]

Сделав эти предварительные замечания, можно продолжить рассмотрение метода сжатия сверхкоротких лазерных импульсов. Соответствующее устройство схематически представлено на рис. 8.12. Импульс лазера, работаюш,его в режиме синхронизации мод, с относительно небольшой максимальной мош,ностью (например, Рр = 2 кВт) и большой длительностью импульса (например, Тр = 6 пс) пропускается через одномодовое кварцевое  [c.517]

Если же говорить о методах генерации сверхкоротких лазерных импульсов, то здесь последние годы принесли отчетливое смещение акцентов. Если на первом этапе основные усилия были направлены на получение стабильной синхронизации мод лазеров с максимально широкой полосой усиления, то в последние годы все большее значение приобретали методы сжатия и формирования импульсов в пассивных системах. Это вызвало всплеск интереса к различным аспектам физики линейного и нелинейного распространения коротких световых пакетов.  [c.7]

Наконец, в начале 80-х годов несколькими группами был преодолен рубеж 10 1 с, началось быстрое освоение фемтосекундного диапазона длительностей (1 фс=10 с). Первые успехи здесь были связаны с предложением в 1981 г. новой концепции лазера на красителе с самосинхронизацией мод — системы со сталкивающимися в поглотителе импульсами. В дальнейшем для генерации фемтосекундных импульсов были успешно применены иные схемы синхронизации мод, лазеры иных типов, разнообразные методы нелинейной оптики.  [c.9]

К числу основных модулей относятся задающие генераторы с фиксированной длиной волны, выполненные на основе твердотельных или ионных лазеров. В последнее время особый интерес вызывают высокостабильные лазеры на гранате с неодимом, работающие в режиме активной синхронизации мод или в сдвоенном режиме — синхронизации мод и модуляции добротности. Преобразование частоты задающих генераторов, как правило с уменьшением длительности, осуществляется методами нелинейной оптики (генерация гармоник, параметрическое преобразование частот) или путем накачки перестраиваемых по частоте лазеров (на красителях, центрах окраски, полупроводниковых или ВКР лазеров).  [c.240]


Комбинированная синхронизация мод. При использовании метода пассивной синхронизации мод пикосекундных лазеров достигаются меньшие длительности импульсов и большая стабильность параметров излучения, а при активной синхронизации мод — более высокие энергетические характеристики. Одновременное использование обоих подходов в схемах синхронной накачки пикосекундных лазеров приводит во многих случаях к оптимальным результатам [28].  [c.253]

В следующих главах будет проведено детальное рассмотрение методов генерации ультракоротких световых импульсов. Но предварительно в данной главе мы дадим в качестве необходимой основы описание общего принципа действия лазера, оптической накачки лазеров, свойств лазерных резонаторов, важных активных материалов и типов лазеров. В конце главы кратко рассматриваются принцип синхронизации мод (взаимодействие мод, захват мод) и основные методы ее реализации.  [c.49]

Для генерации ультракоротких световых импульсов с помощью АИГ Nd-лазера успешно применяются различные методы. Для лазера с непрерывной накачкой применяется преимущественно метод активной синхронизации мод с использованием акустооптических или электрооптических модуляторов (см. гл. 4). В случае АИГ Nd-лазера с импульсной накачкой чаще всего с помощью пассивной синхронизации создается такой режим, при котором лазер испускает цуг ультракоротких импульсов (см. гл. 7).  [c.77]

Метод активной синхронизации мод с помощью периодической модуляции параметров резонатора заключается в следующем. Внутри резонатора помещается модулятор, управляемый внешним сигналом и изменяющий потери резонатора (или другие его важные параметры, например оптическую длину пути) с течением времени по периодическому закону и с определенной частотой модуляции. Если частоту модуляции выбрать так, чтобы она равнялась частотному интервалу между модами для отдельных аксиальных мод, то вследствие модуляции для каждой моды начнется генерация побочных полос. Их частота будет совпадать с частотами обеих соседних мод. В результате этого эффекта между модами возникнет взаимодействие и при  [c.95]

Синхронизацию мод можно осуществить не только при помощи периодической модуляции потерь, но также и посредством периодической модуляции усиления. Это достигается путем накачки лазера цугом импульсов другого лазера с активной синхронизацией мод. Преимущество такого метода заключается в том, что он позволяет получать при периодической накачке импульсы, длина которых существенно меньше длины импульсов накачки. В случае лазера на красителе с синхронной накачкой можно, кроме того, в определенных диапазонах непрерывно перестраивать частоту генерируемых описанным способом ультракоротких импульсов.  [c.96]

Весьма эффективным методом генерации ультракоротких импульсов является так называемая пассивная синхронизация мод, при которой в лазерный резонатор дополнительно к остальным лазерным элементам вводится насыщающийся поглотитель. Это вещество, имеющее в спектре поглощения переход на частоте лазера, причем поперечное сечение поглощения должно быть по возможности большим. Для этих целей особенно подходят органические красители. При попадании импульса излучения лазера на такой поглотитель его молекулы возбуждаются, а поле падающего излучения поглощается. Рассмотрим, например, изменение населенности двухуровневой системы под влиянием поля излучения. В соответствии с (1.22) и (1.23) получим для разности населенностей AN = Ni — N2 в стационарных условиях (Tb>T2i) соотношение  [c.96]

Метод синхронизации мод позволяет получить генерацию лазерных импульсов сверхкороткой длительности (от нескольких десятков фемтосекунд до нескольких десятков пикосекунд). Синхронизация мод соответствует условию генерации, при котором моды резонатора генерируют с примерно одинаковыми амплитудами и синхронизованными фазами.  [c.305]

Ниже мы дадим описание некоторых лазерно активных систем, которые часто применяются для генерации и усиления ультракоротких световых импульсов и о которых пойдет речь в следующих главах в связи с различными методами синхронизации мод.  [c.75]

Продолжительность импульса тем меньше, чем больше число синхронизованных мод. Например, для и 1, Ь = = 10 м, N = 10 получаем АГ 0,6-10" с. Методом синхронизации мод удается получить рекордно короткие импульсы, применение которых для изучения быстронротекающих процессов очень эффективно.  [c.319]

П, э. играет большую роль в квантовой электронике в нелинейной оптике ячейки с просветляющимся веществом используются для т, н. пассивной модуляции добротности и синхронизации мод лазеров, формирования коротких импульсов в лазерных усилителях и т. п. П, э. в газовых средах, помещённых в резонатор лазера а. обладающих доплеровски уширенной линией поглощения на частоте генерации, используется для стабилизации частоты и сужения линий генерации. В нели-нейной спектроскопии наблюдение П. а. в неоднородно уширенных линиях поглощения является ордт/i из методов регистрации спектров с высоким разрешением.  [c.151]

Бнерация сверхкоротких импульсов. Для генерации СКИ в лазерах используют процесс синхронизации продольных мод резонатора лазера. Для синхронизации мод применяются пассивные и активные методы связывания фаз продольных мод лазера. При одинаковой фазе, навязанной всем продольным модам лазера, синфазное сложение амплитуд электрич, полей приводит к генерации СКИ, длительность к-рых ограничена шириной спектра генерации. В неодимовых лазерах, к-рые обычно используют в Ф. с., достигается генерация СКИ длительностью 10" — 10 с при помещении в оптич. резонатор лазера насыщающихся органич. красителей—для пассивной синхронизации мод, а также акустооптич. и эл.-оптич. модуляторов света—для активной синхронизации мод. В методе активной синхронизации мод сфазирование отдельных продольных мод осуществляется с помощью помещаемого внутрь резонатора модулятора для управления потерями резонатора внеш. периодич. сигналом с частотой, равной или кратной частотному интервалу между продольными модами резонатора лазера [3 ].  [c.280]


Другие важные дополнения включают в себя некоторые разделы традиционной оптики (например, метод матрицы лучей, интерферометр Фабри — Перо и многослойные диэлектрические зеркала), описание распространения гауссова пучка (закон AB D) и теорию релаксации колебаний и активной синхронизации мод.  [c.8]

Для теоретического описания работы солитонного лазера используют теорию синхронизации мод и теорию солитонов. В приближении [38] солитонный лазер (см. рис. 5.8) рассматривался как однорезонаторное устройство. Хотя эта модель смогла объяснить многие особенности эксперимента, она оказалась не полностью удовлетворительной. В частности, эта модель требовала, чтобы длина световода L была равна периоду солитона Zq, в то время как экспериментально было найдено [58], что L может быть в целое число раз меньше Zq. По-видимому, для теоретического моделирования работы солитонного лазера необходимо использовать приближение связанных резонаторов, хотя данный метод требует значительных численных расчетов [60-62]. В другом приближении [63] солитонный лазер рассматривался как лазер с синхронизацией мод за счет инжектируемой затравки.  [c.124]

Следующий крупный успех — прорыв в область пикосекундных масштабов времени (t 10 с) датируется 1966—1968 гг. В эти годы были предложены и реализованы методы синхронизации продольных мод лазеров и созданы первые пикосекундные лазеры на стекле с неодимом, генерировавшие импульсы с длительностями до нескольких пикосекунд (их стали называть сверхкороткими ) и мощностями 10 —10 Вт. В те же годы были предложены и впервые продемонстрированы методы нелинейно-оптического формирования и сжатия пикосекундных импульсов, запущены параметрические генераторы перестраиваемых по частоте пикосекундных импульсов, позволившие перекрыть видимый и инфракрасный диапазоны спектра. Таким образом, была продемонстрирована эффективность использования быстрой электронной нелинейности в пико- и субпикосекундной оптической технике.  [c.9]

Современный прогресс экспериментальной оптики волновых пакетов, распространяющихся в диспергирующих средах, целиком обязан достижениям, лазерной физики, связанным с разработкой техники синхронизации мод лазеров, методов быстрой фазовой модуляции света, методов динамической интерферометрии и интерферометрии интенсивности. Вместе с тем следует сказать, что дисперсионные эффекты, сопровождающие распространение коротких волновых пакетов, в принципе, могут быть исследованы и с помощью традиционных иела-зерных источников света, являющихся по своей сути генераторами оптического шума с временем корреляции пико- и фемтосекундного масштаба.  [c.17]

Уже в первые годы после открытия лазера такие замечательные свойства его излучения, как исключительно высокие когерентность, направленность и интенсивность излучения, получение значительных плотностей энергии как в непрерывном, так и импульсном режимах, привлекли внимание не только научных работников, занимающихся разработкой и исследованием лазеров, но и инженерно-технического персонала с точки зрения широкого применения лазеров для практических целей в науке и lex нике. Это явилось одной из причин того, что с начала своего возникновения лазерная техника развивалась исключительно высокими темпами. За несколько лет своего существования она достигла весьма высокого уровня развития. С момента создания первого генератора электромагнитных волн основанного на использовании вынужденного излучения активных молекул, предложенного Н. Г. Басовым и А. М. Прохоровым, открылась возможность создания подобных генераторов в широком диапазоне длин волн, включающих в себя всю видимую часть спектра. Впоследствии усилиями ученых различных стран мира было создано весьма большое число различных типов лазеров, работа" ющих в диапазоне от рентгеновской части спектра до длин волн принадлежащих СВЧ диапазону, т. е, включающих всю инфракрасную часть спектра. В настоящее время существует большое число различных типов лазеров, в качестве рабочих тел в которых используются вещества, находящиеся во всех видах агрегатного состояния (твердом, жидком и газообразном). В различных типах лазеров при этом применяются и различные методы накачки оптическая, электрическая, химическая, тепловая и др. Различаются лазеры и по режиму работы, помимо обычных (непрерывного и импульсного) режимов лазеры работают также и в специфических режимах (гигантских импульсов и синхронизации мод).  [c.3]

Вообще возникновение периодических шумовых пичков в полупроводниковых лазерах с внешним резонатором хорошо известно и используется для активной синхронизации мод и генерации пикосекундных импульсов при модуляции тока питания на частоте основной гармоники шумовых пичков (см. литературу в [20]). Однако описанный метод эффективен только при небольшом превьииении порога. Поэтому в [20] сначала записывалось обращающее зеркало нужной эффективности при большой мошности генерации, а затем она снижалась и в течение медленной релаксации решетки (1 мин) наблюдались Ш1чки с Д 100 пс. Достигнутый результат является чрезвычайно важным и с практической точки зрения в связи со все более широким использованием полупроводниковых лаэеров в линиях связи, оптических процессорах и др.  [c.201]

Генерация ультракоротких световых импульсов полупроводниковыми лазерами может быть достигнута многими методами. Важнейшим является метод активной модуляции усиления ин-жекционного лазера, поскольку токи можно очень проста модулировать с высокой частотой (см. гл. 4). Кроме того, применяется метод синхронной накачки полупроводникового лазера по аналогии с лазером на красителе с синхронизацией мод (см. гл. 5). Самые короткие импульсы (в субпикосекундном диапазоне) удается получить, как и в случаях лазера на красителе и твердотельного лазера на Nd, при помощи пассивной синхронизации мод (см. гл. 6 и 7, особенно разд. 7.4).  [c.88]

Для экспериментального использования эффекта синхронизации мод возникает задача создать генерацию на максимальном числе собственных колебаний с постоянной разностью фаз в лазерно активной среде с широкой спектральной линией усиления. Для этой цели могут использоваться различные методы, которые будет детально описаны в гл. 4—7. В данном разделе мы лишь перечислим важнейшие методы и дадим их краткую характеристику.  [c.95]

Как следует из предыдущих разделов, в пикосекундном и особенно в субпикосекундном диапазонах производить измерения, основываясь на электронных и электронно-оптических методах, чрезвычайно трудно. Нелинейная оптика позволяет применить хорошо развитые методы и в особенности метод корреляционных измерений к предельно коротким световым импульсам. Только этим путем удалось измерить длительности импульсов первых лазеров с синхронизацией мод вскоре после их создания [3.9—3.13]. В качестве примеров таких методов мы рассмотрим генерацию второй гармоники и двухфотонную люминесценцию (о теоретических основах этих эффектов см [11, 30]). Кроме того, мы обсудим оптические затворы, основанные на эффекте Керра, индуцированном лазерным излучением.  [c.117]

Синхронизация мод лазера на АИГ Nd исследовалась Куи-зенгой и Сигманом, экспериментально подтвердившими многие выводы теории, данной в разд. 4.2 [4.6]. Для синхронизации мод лазера на АИГ Nd ими использовался электрооптический фазовый модулятор на кристалле LiNbOs с частотой модуляции 264 МГц. Ширина спектра излучения Av определялась с помощью интерферометра Фабри—Перо. Для измерения длительности импульсов Xl использовался быстродействующий фотодиод. Длительность более коротких импульсов определялась корреляционным методом на основе измерения второй гармоники (см. гл. 3). В зависимости от глубины модуляции Ьрм наблюдались импульсы длительностью от 40 до 200 пс при средней выходной мощности 300 мВт. Без принятия дополнительных мер кристалл модулятора выполнял роль эталона Фабри— Перо, ограничивавшего ширину спектра излучения лазера. Для сокращения длительности импульсов необходимо исключить селекцию мод модулятором, устранив мешающие отражения (для этого можно, например, скосить входные окна модулятора под углом Брюстера к оптической оси резонатора). Можно также наклонить модулятор на достаточно большой угол, устранив таким образом перекрытие падающего и отраженного пучков. Измерялась зависимость ширины спектра излучения и длительности импульсов от коэффициента глубины модуляции 8рм. Результаты измерений представлены на рис. 4.6. Проведенные через экспериментальные точки прямые подтверждают предска-10  [c.147]


Вместо рассмотренной в предыдущем разделе синхронизации мод при модуляции внутренних потерь или оптической длины резонатора синхронизация мод может осуществляться путем модуляции усиления. Для этого в резонатор лазера вводится накачка в виде непрерывной последовательности импульсов, генерируемых другим лазером с синхронизацией мод (см. рис. 5.8). Если длина резонатора лазера достаточно близка к длине резонатора лазера накачки или кратна ей, то при определенных условиях усиление оказывается модулированным с периодом, равным времени полного прохода резонатора. Как и при модуляции потерь, короткий импульс в этом случае формируется за промежуток времени, соответствующий максимальному усилению. Длительность этого импульса при оптимальных условиях может быть на два-три порядка короче длительности импульса накачки. Наибольший практический интерес представляет применение метода синхронной накачки в лазерах на красителях, так как в лазерах этого типа используется преимущественно оптическая накачка, а их линии усиления весьма широки (величина А(0з2/2л лежит в пределах от 10 до 10 Гц). Лазеры на красителях допускают в определенном диапазоне плавную перестройку частоты в области максимума спектра излучения. Это достигается введением в резонатор частотно-селек-тивного оптического фильтра, в качестве которого могут быть использованы, например, эталон Фабри—Перо, фильтр Лио или призма. Ширина спектра пропускания этих фильтров, однако, не должна быть слишком мала, так как ее сужение может вызвать существенное увеличение длительности импульсов. По указанным причинам значение лазеров на красителях с синхронной накачкой в технике генерации пикосекундных и субпи-косекундных импульсов в последние годы все больше возрастает. По сравнению с лазерами на красителях с пассивной синхронизацией мод, которым посвящена следующая глава, синхронно накачиваемые лазеры имеют следующее преимущество для перестройки частоты их излучения может быть использована полная спектральная ширина лазерного перехода, тогда как при пассивной синхронизации полоса перестройки дополнительно ограничивается спектром линии поглощения насыщающегося поглотителя.  [c.150]

Синхронизация мод в лазере на красителе с помощью насыщающегося поглотителя была впервые осуществлена Шмидтом и Шёфером [6.1]. Они наблюдали возникновение цуга коротких импульсов в лазере на родамине 6G, накачиваемом импульсной лампой при помещении в его резонатор кюветы с красителем, игравшим роль насыщающегося поглотителя. Результаты Шмидта и Шёфера были повторены Бредли и О Нейлом, измерившими длительность импульсов методом двухфотонной люминесценции (см. гл. 3). Она оказалась равной 5 пс [6.2]. Пример схемы лазера на красителе с пассивной синхронизацией мод показан на рис. 6.1. Накачка кюветы с красителем осуще-  [c.186]


Смотреть страницы где упоминается термин Методы синхронизации мод : [c.312]    [c.320]    [c.95]    [c.190]    [c.192]    [c.280]    [c.317]    [c.324]    [c.428]    [c.118]   
Смотреть главы в:

Принципы лазеров  -> Методы синхронизации мод



ПОИСК



227 — Синхронизация

Комбинированный метод синхронизации мод

Принцип генерации ультракоротких импульсов синхронизация Методы сиихроиизации мод

Решение нелинейных уравнений методом усреднения. Автоколебания. Вынужденная синхронизация. Система с медленно изменяющимися параметраАдиабатические инварианты. Параметрический резонанс в нелинейной системе. Многомерные системы ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА



© 2025 Mash-xxl.info Реклама на сайте