Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переход в хрупкое состояние

Растворяясь в феррите, фосфор резко повышает температуру перехода в хрупкое состояние или иначе — вызывает хладноломкость стали (рис. 152).  [c.185]

Критерии при выборе марки стали, кратко могут быть сформулированы так а) выбор марки стали (степени легированно-сти) определяется размером термически обрабатываемой заготовки б) уровень прочности определяет температуру отпуска в) наличие концентраторов напряжений и динамических нагрузок определяет необходимость легирования элементами, снижающими температуру перехода в хрупкое состояние (никель) или обусловливает необходимость иметь сталь повышенной и высокой чистоты.  [c.389]


Несмотря на то что тугоплавкие металлы и их сплавы предназначаются для работы при высоких температурах, их хладноломкость, т. е. наличия у них температуры перехода в хрупкое состояние пмеет важное технологическое и эксплуатационное значение.  [c.530]

Важным показателем является температура перехода в хрупкое состояние. Так для мелкозернистого Ре эта температура соответствует — 40° С тогда как для крупнозернистого Ре — около 0° С.  [c.82]

Разновидностью ВТМО, имеющей перспективы применения к низколегированным сталям, в частности к строительным, с целью повышения их конструктивной прочности, пластичности и вязкости, является так называемая контролируемая прокатка. Она позволяет повысить предел текучести стали на 10—30%, ударную вязкость на 30 %, понизить на 30—50°С температуру перехода в хрупкое состояние.  [c.546]

Сера и фосфор — вредные примеси. Сера способствует образованию трещин, а фосфор — резкому снижению ударной вязкости стали. Хром увеличивает прочность, прокаливаемость, сопротивление ползучести без снижения пластичности. При содержании хрома свыше 12 % сталь становится коррозионно-стойкой в атмосфере и во многих других промышленных средах. Никель — повышает прочность, пластичность, ударную вязкость и прокаливаемость, снижает температуру перехода в хрупкое состояние. Молибден делает аустенитную сталь более жаропрочной и коррозионно-стойкой в ряде высокоагрессивных сред. Титан и ниобий увеличивают прочность и жаропрочность сталей, а вольфрам— жаропрочность высоколегированных сталей.  [c.223]

Однако медь пластична по своей природе и не имеет провалов пластичности она не переходит в хрупкое состояние. На механические свойства меди марки М1, содержащей 0,08 % примесей, в частности 0,02 % кислорода, существенное влияние при высоких температурах оказывает  [c.31]

Из этих результатов следует вывод, что нержавеюш ую сталь типа 347 можно применять в реакторной технике в течение значительно больших периодов времени, чем ожидалось ранее. Некоторые результаты указывают на то, что наблюдается уменьшение относительной ударной вязкости облученных образцов. Есть также данные, что облученная нержавеющая сталь испытывает хрупкое разрушение при температуре жидкого азота. В необлученном состоянии эта сталь не переходит в хрупкое состояние вплоть до температуры порядка —204° С.  [c.246]


Они имеют следующие особенности строения и свойств ОЦК решетку, отсутствие полиморфных превращений, критическую температуру хрупкости (переход в хрупкое состояние), высокую коррозийную стойкость в концентрированных кислотах.  [c.4]

Тугоплавкие металлы Ti, Zr, Hf в отличие от типичных тугоплавких имеют объемно-центрированную кубическую решетку (ОЦК) лишь как высокотемпературную модификацию, которая при низкой температуре (для Ti - ниже 882°С, Zr - ниже 863°С и Hf - ниже 1310°С) переходит в плотно упакованную гексагональную (ГПУ). Переход в хрупкое состояние у этих металлов при понижении температуры имеет несколько другой характер, чем у типичных тугоплавких. Это обусловлено тем, что кристаллическая структура не ОЦК, а ГПУ.  [c.4]

ПЕРЕХОД В ХРУПКОЕ СОСТОЯНИЕ  [c.25]

Поскольку это явление впервые обнаружено и наиболее обстоятельно исследовано на железе и его сплавах (сталях) и наблюдается у этих материалов при отрицательных температурах, оно получило название хладноломкость, а температура, при которой происходит переход в хрупкое состояние—порог хладноломкости.  [c.25]

Применительно к тугоплавким металлам такие названия не совсем оправданы, так как у них охрупчивание наблюдается при положительных температурах (Сг, Мо, W, V). В дальнейшем температуру перехода в хрупкое состояние будем называть порогом хрупкости или, по традиции, порогом хладноломкости (эти названия являются синонимами).  [c.25]

В соответствии с современными представлениями переход в хрупкое состояние обусловлен изменением характера разрушения. Выше порога хрупкости разрушение происходит по ямочному (чашечному) вязкому механизму. При разрушении по такому механизму менее пластичное включение или де< кт сплошности является концентратором напряжений. Коэффициент концентрации/Г = 2(с/г) , где с — длина концентратора г - радиус закругления в его вершине. Если рассматривать концентратор как эллипс с осями а и Ь, то в первом приближении  [c.25]

Для менее чистого (грубого, грязного) ванадия (О + N = 5000 анм) четко обнаруживается переход в хрупкое состояние в интервале температур 0-50°С (ударный изгиб) и 0-90°С (статический изгиб).  [c.31]

Кривые вязкой составляющей в изломе для ванадия указанной чистоты, результаты ударных и статических испытаний представлены на рис. 25 и 26. Ванадий с содержанием примесей 1000 и 1800 анм при температуре" —196°С еще не переходит в хрупкое состояние при уменьшении чистоты ванадия четко обнаруживается постепенное повышение порога хладноломкости. Порог хладноломкости ванадия в зависимости от содержания кислорода и азота, определенный по представленным на рис. 25 и 26 данным, приведен ниже  [c.31]

На поверхности излома в зоне переходных температур наблюдаются четко выраженные, локализованные зоны хрупкого и вязкого разрушений (рис. 27), и, следовательно, сериальная кривая волокнистой составляющей в изломе и порога хладноломкости Г о могут быть установлены вполне надежно. Комнатная температура для ванадия любой степени чистоты соответствует области вязкого разрушения, т. е. температура начала перехода в хрупкое состояние при ударном изгибе и для ванадия с содержанием О + N, равным 5000 анм, ниже+20 С. Тем не менее уменьшение чи-  [c.33]

В предыдущем разделе рассматривалась прочность сцепления покрытия (молибден) с основой (сталь) при установлении оптимальных режимов прокатки (оптимальная температура прокатки 950° С, степень обжатия 50%). Необходимо было выяснить, какими механическими свойствами обладает биметаллический композит. Особое внимание было уделено исследованию характера разрушения (определению ударной вязкости, температуры перехода в хрупкое состояние), тем более что этот вопрос в ранних работах по различным биметаллическим композициям практически вообще не изучался.  [c.101]

Кремний на хладноломкость стали влияет неоднозначно. Так, в строительных сталях, используемых в состоянии после проката, отжига и нормализации, увеличение кремния в составе стали приводит к повышению температуры перехода в хрупкое состояние. Вместе с этим введение небольшого количества кремния (0,15—0,35%) в кипящую сталь снижает температуру порога хладноломкости это положительное действие кремния усиливается при совместном раскислении алюминием [51]. Увеличение кремния до 1,0—1,2% оказывает положительное влияние на свойства малоуглеродистых конструкционных марок сталей после закалки и низкого отпуска [58].  [c.41]


Хорошо известно, что многие материалы становятся хрупкими при низких температурах. В последние десятилетия проведены многочисленные работы по определению температур перехода в хрупкое состояние различных металлов и сплавов, предназначенных для работы при низких температурах. Однако для переработки лома низкие температуры используют лишь в последние несколько лет. Исследования (от лабораторных до опытно-промышленных) показали, что сверхнизкие температуры могут найти разнообразное применение при обработке лома как черных, так и цветных металлов. Как правило, обработка лома при низкой температуре позволяет получать конечные продукты в более чистом и более дисперсном виде по сравнению с традиционными методами. Дополнительным пре-  [c.358]

У металлических, в частности конструкционных, сплавов температура перехода в хрупкое состояние, так называемая кри-  [c.285]

Не менее сложно и определение сопротивления отрыву, так как многие материалы трудно переходят в хрупкое состояние. Для получения аот часто необходимо принимать специальные меры — понижение температуры, увеличение скорости деформирования, создание концентраторов напряжений.  [c.555]

Температура, при которой сталь любой марки переходит в хрупкое состояние, не является постоянной величиной. Она зависит от изменения химического состава стали в ограниченных маркой пределах, а также от размеров сечений проката, поковки или отливки. Стальное литье, так же как прокат и по-  [c.227]

Можно привести следующую схему механизма хрупкого разрушения конструкции при наличии в ней остаточных напряжений. В конструкции всегда имеются резкие изменения сечения и различного рода дефекты, что создает местное повышение напряжений и объемное напряженное состояние. В случае эксплуатации конструкции при низкой температуре металл на участках с резкими концентраторами напряжений может переходить в хрупкое состояние. Однако для того, чтобы в этих местах могла при статической нагрузке зародиться трещина, необходимы средние напряжения выше предела текучести металла. Рабочие напряжения в конструкциях, как правило, всегда бывают ниже предела текучести. Поэтому при статических условиях нагружения нет оснований ожидать зарождения развивающейся трещины. Если же в районе расположения резкого концентратора напряжений имеются значительные растягивающие остаточные напряжения, то достаточно небольшого импульса, чтобы появилась и начала распространяться хрупкая трещина.  [c.221]

По степени раскисления сталь изготовляют кипящей, спокойной н полуспокойной (соответствующие индексы кп , сн и пс ). Кипящую сталь, содерн ащую не более 0,07% Si, получают при неполном раскислении металла. Сталь характеризуется резко выраженной неравномерностью распределения серы и фосфора по толщине проката. Местная повышенная концентрация серы может привести к образованию кристаллизационных трещин в шве и околошовной зоне. Кипящая сталь склонна к старению в околошовной зоне и переходу в хрупкое состояние при отрицательных температурах. В спокойной стали, содержащей не ыенев 0,12% Si, распределени(3 серы и фосфора более равномерно. Эти стали менее склонны к старению. Полуспокопная сталь занимает проме куточное положение мел ду кипящей и спокойной сталью.  [c.204]

В iieivOTopbix случаях конкретные условия работы конструкций допускают снижение отдельных показателей механических свойств сварного соединения. Однако во всех случаях, особенно Hjin сва )ке ответственных конструкций, швы не должны иметь трещин, пепроваров, пор, подрезов. Геометрические размеры и форма HI ВОВ долиты соответствовать требуемым. Сварное соединение доли но быть стойким против перехода в хрупкое состояние. Иногда к сва )иому соединению предъявляют дополнительные требования (работоспособность при вибрационных и ударных нагрузках, пониженных температурах и т. д.). Технология должна обеспечивать максимальную производительность и окоиомичность процесса сварки при требуемой надежности конструкции.  [c.215]

Влияние скорости охлаждения в наибольншй степени проявляется при дуговой сварке однослойных угловых hibob и последнего слоя многослойных угловых и стыковых швов при нало кепии их на холодные, предварительно сваренные швы. Металл многослойных швов, кроме последних слоев, подвергающийся действию повторного термического цикла сварки, имеет более благоприятную мелкозернистую структуру. Поэтому он обладает более низкой 1 ритической температурой перехода в хрупкое состояние.  [c.216]

При испытаниях надрезанных образцов на удар хрупкие раз-рутончя переходят в вязкие при повышепии температур испытания. Снижает температурный интервал перехода в хрупкое состояние некоторое увеличение содержания в стали углерода и для ферритпых сталей — азота (примерно в количествах /цщ от концентрации хрома). Такие добавки уменьшают склонность к росту зерна при высоких температурах и улучшают сварочные свойства сталой.  [c.261]

Дисперсионно-твердеющие стали марок 17Г2СФ, 15Г2ФЮ содержат примерно в два раза больше углерода, который в сочетании с микродобавками приводит к образованию упрочняющих карбидов, нитридов, карбонитридных и др. фаз. Они имеют мелкозернистую ферритно-перлитную структуру. Недостатком их является склонность к переходу в хрупкое состояние при температуре от 10 "с до минус 20 °С.  [c.92]

Идею об образовании электронных пар используют и для объяснения ковалентной связи в металлах, хотя законченной теории к настоящему времени не создано [53]. Предложено оценивать относительное содержание ковалентной связи в металлах степенью локализации валентных электронов (СЛВЭ) в процентах [54]. Полагают [8], что эта величина повыщается с увеличением температуры плавления металла она минимальна у серебра, меди и золота (4—10 %) и максимальна у молибдена, рения н вольфрама (88—96 %). Постулируется, что при нагревании до 0,225 Т ковалентная связь заменяется металлическом, а ниже этой температуры — металлы переходят в хрупкое состояние — возникает хладноломкость, так как пластичность возможна только при наличии металлической связи, а не ковалентной или ионной ]8].  [c.194]


Причина перехода металлов с объемно-центрированной решеткой в хрупкое состояние пока является объектом различных предположений (это относится не только к тугоплавким металлам, но и к значительно более подробно исследованным сплавам железа). Автор придерживается мнения, высказанного Н.Н. Моргуновой [2] и другими, что понижение температуры приводит к увеличению в сплаве направленных (локализованных) связей и при некоторых их значениях сплав теряет способность к пластической деформации. Подробнее особенности перехода в хрупкое состояние и влияние на этот процесс состава (легирования) сплавов тугоплавких металлов будут рассмотрены в гл. IV настоящей книги.  [c.7]

Для определения порога хладноломкости рекристаллизованного молибдена нельзя использовать структурный (фрактографический) метод, так как рекристаллизованный молибден разрушается лишь хрупко (вьш1е порога хладноломкости наблюдается пластическая деформация без образования поверхности разрушения). Поэтому для рекртсталлизованного молибдена за верхний порог хладноломкости принимается такая температура, при которой все образцы не разрушаются, а за нижний такая, при которой все образцы разрушаются. Интервалу перехода в хрупкое состояние соответствуют, очевидно, такие случаи, когда часть образцов разрушается, а часть не разрушается.  [c.46]

Температура перехода в хрупкое состояние для молибденового слоя ниже, чем для горячекатаной Ст. 3. Это, по-видимому, свяаанп в первую очередь с различием толщин стальной основы и покрытия — 6 и 2 мм соответственно. Поэтому интервал перехода биметаллического комптаита в хрупкое состояние определяется верхней и нижней температурами перехода. Наименее хладостойким (с учетом условий испытаний и геомет] -ческого фактора) компонентом биметалла оказалась сталь.  [c.103]

Для деформированного молибдена характерно, что переход в хрупкое состояние происходит в определенном интервале температур (в данном случае 175—120 С), в котором ударная вязкость и доля волокнистой составляющей в изломе не имеют постоянных значений (наблюдается зтаяитель-ный разброс результатов). Если принять, что температура перехода Tso соответствует середине этого интервала, то она равна 150" С. Так как тонкий молибденовьщ слой при испытаниях не разрушается вместе со сталью, биметаллический образец имеет такие же сериальные кфявьк  [c.103]

Повышение содержания марганца до 1,5% в конструкционных сталях понижает температуру перехода в хрупкое состояние [53]. При этом благоприятное действие марганца на хладостойкость стали зависит от содерлсания других элементов. Чем ниже содержание углерода, азота и фосфора, тем выше должно быть оптимальное содержание марганца, обеспечивающее наибольшее значение ударной вязкости и по-лолсение порога хладноломкости при более низких температурах [51]. Целый ряд работ [51, 54 и др.] посвящен совместному влиянию углерода и марганца на свойства стали при низких температурах.  [c.40]

Критическая температура перехода стали в хрупкое состояние в значительностй степени зависит от величины зерна стали. Пластичность малоуглеродистой стали при низких температурах повышается с уменьшением величины зерна, а температура перехода в хрупкое состояние сдвигается в сторону низких температур при измельчении перлита [62]. Увеличение размеров ферритного зерна вызывает повышение порога хладноломкости у мягкой листовой стали. У мелкозернистой стали ударная вязкость при понинсении температуры уменьшается плавно, а у крупнозернистой — резко [50].  [c.42]

При прочих равных условиях хладностойкость конструкции повышается при изготовлении ее из стали с более низкой температурой перехода в хрупкое состояние.  [c.228]

Ударные испытания образцов е надрезом (U или V-образным), проводимые на маятниковых и ротационных коирах, позволяют устанавливать работу разрушения (ударную вязкость), приходящуюся на единицу поверхности (по минимальному сечению образца). Ударная вязкость зависит от прочности и пластичности материала при разруишнин и в значительной степени характеризует его склонность к переходу в хрупкое состояние (при снижении температуры, увеличении остроты надреза и скорости приложения нагрузки). Оснащение копров аппаратурой для регистрации усилий, перемещений, скоростей продвижения трещин позволяет определять количественные значения характеристик прочности и пластичности, кото-)ые уже могут являться расчетными. <роме того, получены определенные корреляционные связи между ударной вязкостью и энергетическими характеристиками механики разрушения Glr и J 1с-  [c.28]


Смотреть страницы где упоминается термин Переход в хрупкое состояние : [c.370]    [c.197]    [c.156]    [c.29]    [c.102]    [c.40]    [c.409]    [c.286]    [c.830]    [c.13]    [c.483]    [c.483]   
Смотреть главы в:

Коррозионностойкие сплавы тугоплавких металлов  -> Переход в хрупкое состояние



ПОИСК



235—237 — Переход в хрупкое состояние — Температуры критически свойства 297, 298 — Механические

235—237 — Переход в хрупкое состояние — Температуры критически свойства при повышенных температурах

238 — Переход в хрупкое состояние — Температуры критически

Склонность к к переходу из пластического состояния в хрупкое

Состояние хрупкое

Температура Перехода : в хрупкое состояни

Температура перехода в хрупкое состояние



© 2025 Mash-xxl.info Реклама на сайте