Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Равновесные и обратимые процессы

Реально вопрос о равновесности и обратимости процесса решают путем сравнения скорости распространения возмущений в термодинамической системе со скоростью изменения ее состояния. Например, сравнивают скорость движения поршня, сжимающего газ, со скоростью распространения малых возмущений в газе, равной, как известно, скорости звука чем меньше первая скорость по сравнению со второй, тем ближе процесс сжатия к равновесному, обратимому.  [c.47]


РАВНОВЕСНЫЕ И ОБРАТИМЫЕ ПРОЦЕССЫ  [c.15]

Б. В. Дерягин разработал теорию адгезии . Он установил, что адгезия происходит под действием поверхностных сил и может рассматриваться как термодинамический равновесный и обратимый процесс при условии значительного превышения радиуса кривизны обеих поверхностей над радиусом действия поверхностных сил.  [c.38]

Термодинамическая теория адгезия Б. В. Дерягина рассматривает адгезию как равновесный и обратимый процесс, а силу адгезии —как функцию зазора, разделяющего контактирующие поверхности. Когда этот зазор равен нулю, сила адгезии пропорциональна размерам контактирующих тел [см. (1,64)].  [c.105]

Понятия равновесных и обратимых процессов в общем случае различны. Однако бесконечно медленные равновесные процессы, для которых в конечных соотношениях между определяющими параметрами не только скорости, но и вообще направление изменения определяющих параметров несущественны (не являются сзш ественными аргументами), можно рассматривать как обратимые.  [c.213]

Внешняя среда имеет по определению интенсивные свойства, не зависящие от взаимодействия с системой, т. е. она всегда равновесна и любые процессы в ней обратимы. Поэтому в силу (6.27)  [c.73]

Таким образом, идеально равновесным и обратимым можно считать бесконечно медленный процесс. Если говорить о процессе расширения или сжатия без теплообмена (цилиндр с поршнем в адиабатной оболочке), когда работа производится за счет внутренней энергии, то при необратимом (быстром) изменении объема часть внутренней энергии уйдет на работу против сил трения в газе (завихрения) и внешняя работа поршня будет меньше при расширении и больше при сжатии. Этот эффект называют внутренней необратимостью или диссипацией (рассеянием) энергии. Он обладает четко выраженной направленностью та часть механической работы, которая совершается против сил трения, переходит в теплоту, обратный самопроизвольный процесс  [c.47]

При изучении равновесных и обратимых термодинамических процессов идеальных газов должны быть выявлены во-первых, закономерность изменения основных параметров, характеризующих состояние рабочего тела во-вторых, особенности реализации условий первого закона термодинамики.  [c.20]

Понятие о равновесных и обратимых термодинамических процессах  [c.39]

В результате в подходе Вант-Гоффа—Нернста, с одной стороны, не хватает функции состояния, связанной с химической реакцией, а с другой стороны, хотя и сделан упор на химическую реакцию, но рассматриваются только равновесные и обратимые состояния, тогда как теплота реакции или максимальная работа имеют реальный смысл лишь при условии протекания химического процесса за конечное время.  [c.10]


Более подробное рассмотрение свойств равновесных и неравновесных процессов приводит к установлению понятия об обратимых и необратимых процессах.  [c.56]

Прежде чем приступить к изучению законов термодинамики, необходимо познакомиться с такими понятиями, как неравновесное и равновесное состояние системы и обратимость процесса.  [c.25]

Все процессы рассматриваются как равновесные и обратимые, при исследовании применяются уравнение состояния идеального газа и первый закон термодинамики.  [c.41]

Потери теплоты в окружающую среду, на трение и т. п. не принимаются во внимание. Все процессы рассматриваются как равновесные и обратимые.  [c.75]

Какой термодинамический процесс можно считать равновесным и обратимым  [c.17]

Одно дополнительное замечание читатель, знакомый с учебниками по термодинамике, может припомнить чувство неудовлетворенности, возникающее при выводе уравнений, подобных уравнению (4-4.4), из-за некоторой расплывчатости соображений, касающихся обратимых и необратимых процессов, которые использовались где-то в ходе рассуждений. В последующем мы будем говорить о реальных процессах, которые являются необратимыми. Полученные соотношения относятся к области термодинамики необратимых процессов. Равновесные соотношения (или соотношения термостатики), а также соотношения линейной неравновесной термодинамики (типа соотношений Онзагера) можно получить как некоторые предельные случаи.  [c.149]

Основные условия для получения максимальной работы от системы требуют, чтобы движуш,ая сила и сила сопротивления были уравновешены во всех случаях. Такой процесс можно назвать равновесным , или обратимым , поскольку только бесконечно малые изменения в силах действующей и противодействующей будут вызывать процесс, обратный своему направлению. Такой процесс является предельным — к нему можно приближаться, но нельзя достигнуть в действительности. Он является стандартным или относительным процессом, с которым можно сравнить реально выполненные процессы.  [c.37]

Циклы бывают обратимые и необратимые. Цикл, состоящий из равновесных обратимых процессов, будет обратимым. Рабочее тело в таком цикле не должно подвергаться химическим изменениям.  [c.110]

Энергия сохраняется, конечно, во всех процессах, равновесных и неравновесных, обратимых и необратимых. Поэтому равенства  [c.102]

Обратимые и необратимые процессы могут быть составлены из последовательности равновесных или неравновесных состояний рассматриваемой физической системы.  [c.29]

Исходя из второго начала термодинамики, рассмотрим прежде разделение всех процессов, испытываемых изолированной системой в целом, на обратимые и необратимые и установим отношение этих процессов к равновесным и неравновесным.  [c.53]

Мерой необратимости процесса в замкнутой системе (см. 17) является изменение новой функции состояния — энтропии, существование которой у равновесной системы устанавливает первое положение второго начала о невозможности вечного двигателя второго рода. Однозначность этой функции состояния приводит к тому, что всякий необратимый процесс является неравновесным (см. 17). Верно и обратное заключение всякий неравновесный процесс необратим, если в дополнение ко второму началу осуществляется достижимость любого состояния неравновесно, когда оно достижимо из данного равновесно [вся современная практика подтверждает выполнение этого условия однако противоположное условие (см. 30) выполняется не всегда]. Деление процессов на обратимые и необратимые относится лишь к процессам, испытываемым изолированной системой в целом разделение же процессов на равновесные и неравновесные с этим не связано.  [c.54]

Термодинамика систем с отрицательными температурами изложена в гл. 7. Из этой главы можно заключить, что все вышеприведенные утверждения о системах с отрицательными температурами ошибочны. Спиновые состояния с отрицательными температурами — это равновесные состояния, и поэтому к ним применимо термодинамическое понятие температуры. Состояния эти являются устойчивыми, но в отличие от обычных систем их устойчивость характеризуется не минимумом внутренней энергии и энергии Гиббса, а максимумом этих функций (см. 34). Что касается того, что системы с отрицательной температурой остынут при контакте с телами, имеюш ими положительную температуру, то тело с /=10 С тоже остынет при контакте с термостатом, имеющим температуру / = 5° С, однако это не означает, что первоначальное состояние тела было неравновесным и неустойчивым. Теплый воздух в закрытой комнате зимой тоже остынет через характерное время теплопередачи через стены, хотя состояние воздуха все время равновесно и устойчиво. Состояния с отрицательной температурой нельзя представлять себе как состояния водного раствора соли в стакане в первые секунды после его переворачивания вверх дном, когда плотность раствора вверху больше, чем внизу, и система имеет избыток механической энергии, переходящей со временем в энергию теплового движения. При отрицательной температуре (см. 33) в системе могут быть проведены различные обратимые процессы, чего принципиально нельзя было бы сделать при неравновесном состоянии системы.  [c.174]


Т—8-диаграмма. Если по оси абсцисс откладывать значения удельной энтропии 5 однородного тела, а по оси ординат — значения его абсолютной температуры Т, то равновесное состояние тела изобразится точкой с координатами Т, 5, равными значениям температуры и удельной энтропии тела в данном состоянии. Обратимый процесс изменения состояния тела от начального состояния 1 (рис. 2.26) до некоторого состояния 2 изобразится на Т—5-диаграмме непрерывной кривой, проходящей через точки / и 2.  [c.78]

Превращения энергии при фазовых переходах. При равновесном фазовом переходе полезная внешняя работа не производится. Действительно, при обратимых процессах с постоянными р и Т, к числу которых относится равновесный фазовый переход, полезная внешняя работа L согласно выражению (3.13) равна энергии Гиббса —Фа-  [c.127]

В предыдущих главах исследовались исключительно состояния термодинамического равновесия различных термодинамических систем там, где шла речь о процессах, последние предполагались равновесными, т. е. сводились в конечном счете к последовательности состояний равновесия, проходимых рассматриваемой термодинамической системой. Такой подход является достаточным для многих важных задач, так как позволяет, во-первых, выявить общие связи, существующие между различными свойствами тел, и, во-вторых, выяснить особенности разных равновесных обратимых процессов изменения состояния тел, в частности, определить работу и теплоту процесса.  [c.331]

При необратимых процессах методы термодинамики равновесных процессов приводят только к энергетическим соотношениям (в основном в виде неравенств), характеризующим различие в работе, производимой термодинамической системой в данных условиях при обратимом и необратимом переходах из одного состояния в другое (в том случае, когда начальное и конечное состояния системы заданы) в некоторых частных задачах, например при адиабатическом процессе, удается, кроме того, вычислить и работу процесса.  [c.331]

В термодинамике существуют понятия обратимых и необратимых процессов. Обратимым называется процесс, после совершения которого в прямом, а затем в обратном направлении рабочее тело возвращается в свое первоначальное состояние без дополнительных затрат энергии. В дальнейшем под словом процесс будем понимать равновесный обратимый процесс.  [c.136]

Как мы уже указывали, автор в ряде случаев избегает строгого подхода к тем или иным термодинамическим понятиям. Например, по сути дела он не провел различия между понятиями равновесный и обратимый (процессы). Как известно, про--цесс является равновесным (квазистатическим), если он состоит из непрерывной совокупности равновесных состояний системы. Обратимый же процесс — это такой процесс с рассматриваемой системой, выполнив который она может вернуться в исходное состояние без изменений в ней самой и в системах, внешних по отношению к ней. В подавляющем большинстве случаев равновесные процессы являются обратимыми, однако можно привести пример, когда равновесный процесс не является обратимым. В описании политропных процессов автор отошел от общепринятого понимания понятия политропный процесс . В отличие от принятого в советской термодинамической литературе автор определяет политропный процесс как такой процесс с идеальным газом, который удовлетворяет условию pv = onst, в котором величина о лежит между единицей и величиной отношения pj . Поэтому изотермический, адиабатный и многие другие процессы не являются, по мнению автора, политропными. В указанном ограничении величины о и состоит отличие понимания политроп-ного процесса автором от принятого советскими термодинамиками.  [c.24]

Равновесный и обратимый процессы, составляющие одну и ту же последовательность равновесных состояний, в дальнейшем называются конфигуративными. Графические изображения таких процессов тождественны, но при этом внешние эффекты процессов (работа, теплообмен) будут различны, так как в реальном равновесном процессе, в отличие от обратимого, неизбежны необратимые явления (трение, диффузия, неравновесный теплообмен и т. п.).  [c.11]

Циклы бывают обратимые и необратимые. Цикл, состояпщй из равновесных и обратимых процессов, называют обратимым. Рабочее тело в таком цикле не должно подвергаться химическим изменениям. Если хоть один из процессов, входящих в состав цикла, является необратимым, то и весь цикл будет необратимым.  [c.7]

Если процессы, входящие в цикл, равновесные и обратимые, то цикл обратимый. Если какой-либо про-Рис. 5-1. Произволь- ВХОДЯЩИЙ в цикл, неравновес-  [c.54]

В заключение раздела мы хотим сделать одно историческое замечание. В следуюш,ей главе мы введем величину, которую Гиббс назвал свободной энергией. Свободную энергию Гиббса одного моля вещества X можью интерпретировать как химический потенциал вещества X. Превраш,ение вещества X в вещество Z вызывает уменьшение свободной энергии Гиббса вещества X и увеличение свободной энергии Гиббса вещества Z. Таким образом, химическое сродство реакции X -f Y —> 2Z, определяемое как величина А = (fix + fiy -2fj.z), может быть интерпретировано как отрицательное изменение свободной энергии Гиббса, когда 1 моль вещества X и 1 моль вещества Y реагируют с образованием 2 молей вещества Z. Это изменение свободной энергин Гиббса, называемое свободной энергии Гиббса реакции , равно взятому со знаком минус сродству А, но между этими двумя понятиями существует фундаментальное концептуальное различие химическое сродство есть понятие, которое связывает необратимые химические реакции с энтропией, в то время как свободная энергия Гиббса используется главным образом в связи с равновесными состояниями и обратимыми процессами. Однако во многих учебниках термодинамики свободная энергия Гиббса используется вместо химического сродства и даже не упоминается о связи между энтропией и скоростями ре-акцийЧ В известной книге Исторические основы химии Лестера [1, р. 206] говорится о таком неправильном истолковании этих понятий в учебнике по тер.модинамике Гильберта Ньютона Льюиса (1875-1946) и Мерля Рэндалла (1888-1950) [8]  [c.120]


Рассмотрим равновесный процесс расширения газа /1В(рис. 5-9), который прошел через равновесные состояния А, I, 2, 3, п, В. В этом процессе была получена работа расширения, изображаемая в некотором масштабе пл. ABD . Для того чтобы рабочее тело возвратить в первоначальное состояние (в точку Л), необходимо отточки В провести обратный процесс — процесс сжатия. Если увеличить на величину dp внешнее давление на поршень, то поршень передвинется на бесконечно малую величину и сожмет газ в цилиндре до давления внешней среды, равного р+Ф-При дальнейшем увеличении давления на dp поршень опять передвинется на бесконечно малую величину, и газ будет сжат до нового давления внешней среды. Во всех последуюш,их уве-. личениях внешнего давления на dp газ, сжимаясь при обратном течении процес-. са, будет проходить через все равновесные состояния прямого процесса — В, п, 3, 2, 1, А и возвратится к состоянию, характеризуемому точкой А. Затраченная работа в обратном процессе сжатия (пл. BA D) будет равна работе расширения в прямом процессе (пл. ABD ). При этих условиях все точки прямого процесса сольются со всеми точками обратного процесса. Такие процессы, протекающие в прямом и обратном направлениях без остаточных изменений как в самом рабочем теле, так и в окружающей среде, называют обратимыми. Следовательно, любой равновесный термодинамический процесс изменения состояния рабочего тела всегда будет обратимым процессом.  [c.60]

Максимальную работу в цикле Карно можно получить только в том случае, когда температура рабочего тела равна температуре тенлоотдатчика и когда наименьшая температура рабоч( го тела равна температуре тенлопрпемника, т. е. когда совершаются обратимые процессы. Отсюда максимальную работу в системе при переходе из неравновесного состояния в равновесное можно получить только при осуществлении обратимых адиабатных и изотермических процессов.  [c.126]

Из этого примера видно, что, если бы мы могли увеличить число шагов до такой степени, чтобы возникающая в системе неравно-весность оказалась на уровне естественных флуктуаций, можно было бы и полное увеличение энтропии системы сделать порядка тех же флуктуаций и получить таким образом процесс, не сопровождающийся макроскопическим возрастанием энтропии. Все состояния, через которые проходила бы система в таком предельно деликатном процессе, были бы равновесными, а сам процесс — полностью обратимым.  [c.100]

Из разобранного в предыдущем параграфе примера видно, что степень обратимости процесса увеличивается по мере уменьшения его скорости. Это происходит потому, что необратимость всегда связана с неравновесностью проходимых системой состояний. А неравновес-ность будет, очевидно, тем меньше, чем меньше скорость процесса по сравнению со скоростью самопроизвольного установления в системе термодинамического равновесия. В предельно медленном процессе все состояния, через которые проходит система, будут просто равновесными, и поэтому такие процессы называют равновесными, или квазистатическими.  [c.100]

О Это утверждение можно аргументировать и не входя в детали преобразования внутренней энергии в работу. Почему при Ш = АО неравновесная система нагреватель+холодильннк не может произвести работу Потому что ее внутренняя энергия в процессе установления равновесия остается неизменной все тепло от нагревателя переходит к холодильнику. Ясно поэтому, что работа будет тем больше, чем меньше будет энергия системы тело+среда в конце процесса установления за счет этого уменьшения энергии и совершается работа. Но конечное состояние этой теплоизолированной системы является равновесным и характеризуется определенным значением объема. Поэтому ее анергия будет тем меньше, чем меньше будет ее энтропия в силу определения (4.1) и ввиду положительности температуры производная (ди/дS)v > о, и это означает, что при неизменном объеме энергия растет с увеличением энтропии и уменьшается при ее уменьшении. Но энтропия теплоизолированной системы не может убывать. В лучШем случае, при обратимости процесса, она будет оставаться неизменной. Это и есть условие получения максимальной работы при этом конечная энергия системы будет минимально возможной.  [c.113]

В 1876 г. И. Лошмидт выступил с возражениями против развитой Больцманом теории об одностороннем изменении -функции (в дальнейшем ее стали называть //-функцией). Суть его замечаний сводилась к следующему. В первоначально неравновесной системе столкновения частиц приводят к тому, что с течением времени и ней установится равновесное максвелловское распределение частиц по скоростям. При этом, по Больцману, Я-функция будет монотонно убывать. Если после достижения равновесия изменить все скорости частиц на противоположные, то эволюция системы будет происходить в сторону удаления ее от равновесия, причем Я-функция будет возрастать. Мысленный парадокс Лошмидта приводил к тому, что у Я-функции имеется столько же возможностей возрастать, сколько и убывать. Это логически противоречит тому, что механические уравнения 01шсывают обратимые процессы, в то время как результаты Больцмана описывают необратимые процессы.  [c.85]

Обратимым процессом называют процесс, который может происходить в прямом и в противоположном направлениях и притом так, что при обратном процессе (т. е. при возвращении к исходному состоянию) система при изменении внешних условий в обратной последовательности переходит от конечного состояния к начальному через все те же равновесные состояния, что и в случае прямого процесса, но только в обратном порядке, без появления в самой системе или окружаюшрй среде каких-либо остаточных конечных изменений. Процессы, не удовлетворяющие этому условию, называются необратимыми.  [c.24]

Рассмотрим круговой процесс изменения состояния термодинамической системы (рис. 1.9), заключающийся в переходе от начального состояния к некоторому состоянию 2 по пути ]—а—2 и возвращении от состояния 2 к исходному состоянию 1 по другому пути 2—Ь—1 состояния / и 2 предполагаются равновесными. Каждый из указанных переходов обратим (в общем случае переходы могут быть и необратимыми). Допустим, что термодинамическая система является закрытой и двухпараметрической, вследствие чего равновесное состояние ее определяется двумя независимыми параметрами. При обратимом процессе, определяемом условием X = onst, элементарная работа dL и элементарное количество теплоты dQ согласно (1.16) и 1.21)  [c.30]

Это выражение получено из рассмотрения обратимых процессов, и поэтому dQ представляет собой количество теплоты, полученной системой от внешних источников теплоты при одинаковых температурах этих источников и системы. Величины й-2. . и соответственно Ai, Ла.....Л относятся к равновесному соетоянию системы.  [c.93]


Смотреть страницы где упоминается термин Равновесные и обратимые процессы : [c.30]    [c.47]    [c.56]    [c.50]    [c.97]   
Смотреть главы в:

Теплотехника  -> Равновесные и обратимые процессы



ПОИСК



Значение равновесных (обратимых) процессов

Обратимость

Понятие о равновесных и неравновесных, обратимых и необратимых процессах

Понятие о равновесных и обратимых термодинамических процессах

Процесс равновесный

Процессы обратимые

Равновесные (квазистатические) процессы. Обратимые процессы Время релаксации

Равновесные (обратимые) и неравновесные (необратимые) процессы

Равновесные термодинамические процессы и их обратимость

Термодинамическая равновесность, обратимые и необратимые процессы

Энтропия. Равенство Клаузиуса. Следствия основного уравнения термодинамики обратимых процессов, относящиеся к равновесным состояниям



© 2025 Mash-xxl.info Реклама на сайте