Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Программное обеспечение решения систем линейных алгебраических уравнений

Выбор метода решения на ЭВМ системы линейных алгебраических уравнений зависит от свойств матрицы А, числа уравнений N и возможностей ЭВМ — объема оперативной памяти, быстродействия и числа значащих цифр, с которыми ведутся вычисления. В настоящее время в прикладном программном обеспечении ЕС и СМ ЭВМ имеется достаточно большое число программ, реализующих прямые методы. Здесь мы рассмотрим только один прямой метод — метод Гаусса. Некоторые другие прямые методы — метод прогонки, метод квадратного корня — будут рассмотрены ниже в главах 3 и 4 при обсуждении алгоритмов решения тех задач, где их использование наиболее эффективно.  [c.10]


Остановимся на общей структуре пособия. В первой главе рассматривается часто встречающаяся в инженерной практике задача расчета средних температур по моделям с сосредоточенными параметрами. Здесь же изложены методы решения систем линейных и нелинейных алгебраических уравнений и обыкновенных дифференциальных уравнений, дано описание соответствующего стандартного программного обеспечения. Подробно разобраны примеры программ расчета стационарных и нестационарных температур для системы, состоящей из твердых тел и движущихся жидкостей. Изучение первой главы необходимо для понимания материала следующих.  [c.4]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


Возможности программного обеспечения эта интерактивная, структурированная моделирующая программа может быть использована для решения системы дифференциальных (в том числе нелинейных), разностных и алгебраических уравнений, возникающих в задачах идентификации и проектирования. В программе предусмотрены различные блоки 55 типов, включая интегратор с насыщением, блок временной задержки и другие. Пользователь может назначать блокам символические имена. В программе используются пять методов интегрирования четыре метода с фиксированным шагом (метод Эйлера, метод Адамса—Башфорта-2, метод Рунге—Кутты-2 и метод Рунге—Кутты-4) и один с изменяющимся (метод Рунге—Кутты-4). Линейная и квадратичная интерполяция (от 11 до 201 точек) проводится на основе генераторов функций трех типов. Алгоритмические петли могут быть решены интерактивным методом, что позволяет решать нелинейные алгебраические уравнения. Все переменные, получаемые в процессе моделирования, сохраняются в памяти. В дальнейшем они могут быть использованы для обработки, сохранены на диске или использованы как начальные условия для следующего прогона. Кроме того, предусмотрены средства многократного прогона. Программа содержит процедуру оптимизации, причем пользователь может задавать критерий оптимизации и до девяти произвольных оптимизируемых параметров. Каждый параметр может быть ограничен сверху и снизу. Для улучшения скорости процедуры оптимизации для каждого параметра может быть выбран соответствующий масштаб. Несколько моделей могут быть объединены в одну новую модель. Рассчитанные переходные характеристики и параметры могут быть использованы в последующих прогонах. Пользователь может легко определить блок нового типа, для чего необходимо выполнить операцию компоновки. Программа не предназначена для решения дифференциальных уравнений с частными производными, полиномиальных и матричных уравнений.  [c.320]


Смотреть главы в:

Применение ЭВМ для решения задач теплообмена  -> Программное обеспечение решения систем линейных алгебраических уравнений



ПОИСК



I алгебраическая

Линейные алгебраические системы

Линейные алгебраические уравнени

Линейные системы уравнений — Решение

Линейные системы — Решение

Линейные уравнения

Линейные уравнения — Системы

Обеспечение программное

Программные

Решение системы

Решение системы линейных алгебраических уравнений

Решение системы линейных уравнени

Решения уравнения (системы)

Система линейная

Система линейных уравнени

Система программного обеспечения (СПО)

Система уравнений алгебраическая

Системы N алгебраических уравнений решение

Системы линейных алгебраических уравнений

Системы программные

Уравнения алгебраические линейны

Уравнения алгебраические линейны линейные



© 2025 Mash-xxl.info Реклама на сайте