Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоотдача при вынужденном течении жидкостей

ТЕПЛООТДАЧА ПРИ ВЫНУЖДЕННОМ ТЕЧЕНИИ ЖИДКОСТИ В ТРУБАХ И КАНАЛАХ  [c.334]

ТЕПЛООТДАЧА ПРИ ВЫНУЖДЕННОМ ТЕЧЕНИИ ЖИДКОСТЕЙ  [c.288]

Коэффициент теплоотдачи при вынужденном течении жидкости в трубе  [c.282]

Теплоотдача при вынужденном течении жидкости в трубах. Расчет теплоотдачи при движении жидкости в трубах представляет особый интерес, так как трубчатые аппараты и теплообменники нашли самое широкое распространение на химических производствах.  [c.131]


Теплоотдача при вынужденном течении жидкости в трубах -л каналах  [c.208]

ВАРИАЦИОННЫЙ МЕТОД РАСЧЕТА ТЕПЛООТДАЧИ ПРИ ВЫНУЖДЕННОМ ТЕЧЕНИИ ЖИДКОСТИ В ТРУБАХ ПРОИЗВОЛЬНОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ i)  [c.325]

Расчетные уравнения подобия при вынужденном течении жидкостей в трубах получают как аналитически путем решения интегрального уравнения теплоотдачи, так и с помощью теории подобия и размерностей путем обработки результатов экспериментальных исследований.  [c.301]

ОСОБЕННОСТИ ТЕПЛООТДАЧИ ПРИ ВЫНУЖДЕННОМ ТЕЧЕНИИ В ТРУБАХ ВЯЗКОПЛАСТИЧНЫХ ЖИДКОСТЕЙ  [c.304]

При вынужденном течении жидкости в трубах только на достаточном удалении от входа в зависимости от режима течения жидкости устанавливается вполне определенное распределение скорости н температуры (стабилизированное течение), не зависящее от начальных условий. В этой области теплоотдача зависит от скорости, диаметра трубы и физических свойств  [c.131]

Теплоотдача при вынужденном движении жидкости вдоль плоской поверхности. При движении жидкости вдоль плоской поверхности профиль распределения продольной скорости поперек потока изменяется по мере удаления от передней кромки пластины. Если скорость в ядре потока и о, то основное изменение ее происходит в пограничном слое толщиной б, где скорость уменьщается от vvo до и,. = О на поверхности пластины. Течение в пограничном слое может быть как ламинарным, так и турбулентным. Режим течения определяется критическим значением критерия Рейнольдса, нижний предел которого для ламинарного пограничного слоя равен Re p = 8 Ю , а при Re > 3 10 вдоль пластины устанавливается устойчивый турбулентный режим течения. При значениях 8 10 < Re < 3 10 режим течения — переходный (рис. 2.30).  [c.170]

Из (12) и (18) видно, что фононное контактное теплосопротивление определяется соотношением между плотностями и скоростями звука в рассматриваемых средах. В приведенных расчетах нигде не фигурирует скорость потока жидкого металла и параметры, характеризующие режим его течения. Известно, что теплоотдача при вынужденной конвекции жидкости может быть выражена соотношением между безразмерными критериями Нуссельта, Рейнольдса и Прандтля, т. е. интенсивность теплообмена будет определяться и скоростью потока жидкости. Однако специфика жидких металлов заключается в том, что они имеют очень низков значение числа Прандтля по сравнению со всеми другими жидкостями [9]. Поэтому для них передача тепла турбулентной конвекцией отступает на второй план по сравнению с чрезвычайно высоким коэффициентом теплопроводности. А так как основное термическое сопротивление находится при этом в узком пристеночном слое, в котором тепло переносится к жидкому металлу или от него за счет обычной теплопроводности, то тем самым правомерность предпринятого рассмотрения жидкого металла как неподвижного при расчете контактного теплосопротивления получает достаточное обоснование. При решении же гидродинамической задачи о нахождении коэффициента теплообмена между жидким металлом и твердой стенкой учет режима течения обязателен.  [c.13]


Г лава 7, ТЕПЛООТДАЧА В ТРУБАХ И КАНАЛАХ ПРИ ВЫНУЖДЕННОМ ТЕЧЕНИИ ЖИДКОСТИ  [c.272]

Перенос теплоты в пористых средах при вынужденном течении в них жидкостей осуществляется несколькими способами. Коэффициент теплоотдачи изменяется в зависимости от свойств материала и теплоносителя, интенсивности и характера процесса. При этом он обязательно сопровождается разностью температур между твердой и жидкой фазами, независимо от того, какую величину они имеют.  [c.29]

Для получения чисел подобия на основе анализа размерностей используют различные методы. Наиболее простой и удобный из них — метод Рэлея. В соответствии с этим методом искомая величина выражается через влияющие на нее параметры с помощью степенного комплекса, включающего безразмерный коэффициент и все используемые в анализе параметры в различных степенях. Например, при выявлении чисел подобия, которые надо использовать при обобщении опытных данных, полученных при исследовании теплоотдачи в трубе при вынужденном течении, искомая величина — коэффициент теплоотдачи а. Качественный анализ этого явления показывает, что если не учитывать влияния массовых сил и других усложняющих факторов на процесс теплообмена, то интенсивность теплоотдачи должна определяться линейным размером системы /о, скоростью жидкости Wo, плотностью р, удельной тепло-  [c.19]

При вынужденном течении кипящей жидкости в трубах интенсивность теплоотдачи зависит от соотношения турбулентных возмущений, вызываемых процессом парообразования и самим движением жидкости.  [c.201]

При вынужденном движении жидкости интенсивность теплоотдачи в значительной мере зависит от характера течения жидкости, определяемого числом Рейнольдса. Поэтому при моделировании должно соблюдаться равенство этих чисел, т. е. Ке = Ре". Здесь одним штрихом отмечены значения, относящиеся к натурному образцу, двумя — к модели. Из равенства чисел следует  [c.201]

Течение теплоносителей в активной зоне ядерных реакторов, теплообменников, парогенераторов практически всегда носит турбулентный характер. Поэтому ниже рассматривается теплообмен лишь при турбулентном течении жидкостей и газов в каналах различной формы, а также теплообмен при продольном и поперечном обтекании пучков труб или других поверхностей. Разбираются случаи вынужденной, свободной и смешанной конвекции. Интенсивность конвективной теплоотдачи жидкостей и газов при турбулентном течении определяется коэффициентом теплоотдачи, который, как правило, относится к разнице температур стенки и средней температуры среды а = — tf).  [c.51]

В общем случае теплоотдача при кипении в трубе "определится системой критериев (17.30), дополненной числом Рейнольдса вынужденного течения жидкости  [c.355]

Теплоотдача при вынужденном течении жидкости в трубах, помимо других факторов, в значительной мере определяется режимом движения. При Ре<Рекр1 = 2000 режим движения в трубах ламинарный, при Не Рекр2 = 10 — турбулентный, при 2000< Ке< 10 — переходный. Движение и теплоотдача в трубах протекают сложнее по сравнению с движением и теплоотдачей при внешнем омывании тел.  [c.298]

Рис. 3.4. Теплоотдача при вынужденном течении жидкоети а, б — распределение скоростей по сечению трубы при ламинарном и турбулентном режимах в — характер изменения интенсивности теплоотдачи при вынужденном движении жидкости Рис. 3.4. Теплоотдача при вынужденном течении жидкоети а, б — <a href="/info/20718">распределение скоростей</a> по сечению трубы при ламинарном и турбулентном режимах в — характер изменения <a href="/info/30621">интенсивности теплоотдачи</a> при <a href="/info/2446">вынужденном движении</a> жидкости
При вынужденном течении жидкостей с числом Прандгля более пяти, при естественной конвекции и фазовых изменениях теплоносителей температуру стенки предварительно задают. После вычисления коэффициентов теплоотдачи ее проверяют, используя условие постоянства плотности теплового потока через стенку для установившегося режима  [c.173]


Коэффициент теплоотдачи а в ккал1м ч град при вынужденном течении жидкости зависит от следующих величин средней скорости течения w в м сек, динамической вязкости в кг ч1м , удельной теплоемкости жидкости с в ккал кг град, коэффициента теплопроводности жидкости К в ккал1м ч град, удельного веса жидкости Т в кг/ж , диаметра трубы d в м, длины трубы I в м, ускорения силы тяжести g в м1сек . Вследствие невозможности определения коэффициента теплоотдачи по одному уравнению, охватывающему все указанные выше величины, обычно их комбинируют в следующие комплексы  [c.172]

Гл. 7 и 8 в наибольшей степени имеют прикладной характер. В гл. 7 вводятся основные количественные характеристики, обычно используемые при одномерном описании двухфазных потоков в каналах расходные и истинные паросодержания, истинные и приведенные скорости фаз, скорость смеси, коэффициент скольжения, плотность смеси. При рассмотрении методов прогнозирования режимов течения (структуры) двухфазной смеси акцент делается на методы, основанные на определенных физических моделях. Расчет трения и истинного объемного паросодержания дается раздельно для потоков квазигомогенной структуры и кольцевых течений. В гл. 8 описаны двухфазные потоки в трубах в условиях теплообмена. Приводится современная методика расчета теплоотдачи при пузырьковом кипении жидкостей в условиях свободного и вынужденного движения. Сложная проблема кризиса кипения в каналах излагается прежде всего как качественная характеристика закономерностей возникновения пленочного кипения при различных значениях  [c.8]

Теплоотдача при пленочном кипении в условиях свободной и вынужденной конвекции жидкости. Рассмотрим процесс теплоотдачи при пленочном кипении жидкости на вертикальной пластине для услсви11 ламинарного течения пленки пара.  [c.269]

При ламинарном течении жидкости в трубах свободное движение накладывается на вынужденное, что приводит к изменению теплоотдачи. При ОгРг>8-10 имеет место вязкостно-гравитационный ламинарный режим и средний коэффициент теплоотдачи на внутренней поверхности горизонтальной трубы определяется выражением  [c.397]

При вынужденном течении однофазного потока в условиях турбулентного режима интенсивность теплообмена существенно выше, чем при естественной конвекции, поэтому в этом случае влияние процесса парообразования а коэффициент теплоотдачи наблюдается яри более 1Высоких температурах ядра потока. Следовательно, при одной и той же плотности теплового потока в условиях вынужденного движения значение предельного недогрева жидкости меньше, чем в условиях естественной конвекции.. Скорость жидкости оказывает существенное влияние на температуру i .K.  [c.260]

По мере увеличения температуры стенки, а следовательно, и ее тепловой нагрузки, перегрев жидкости в пристенном слое увеличивается, в связи с чем равновесный размер пузырьков становится меньше. Таким образом, плотность распределеления одновременно сидящих на стенке пузырей увеличивается, как и густота заполнения жидкостного объема свободно движущимися пузырями. Это приводит к росту суммарной поверхности раздела двух фаз, а следовательно, к интенсификации парообразования. Мощным фактором, действующим в том же направлении, является многоочаговое возмущение пограничного слоя жидкости пузырями. При росте пузыря окружающая его жидкость оттесняется, после же отрыва пузыря менее нагретая жидкость устремляется к месту, где перед тем находился пузырь. Возникают пульсационные движения, которые в районе каждого центра парообразования периодически турбулизируют пристенный слой. Пока температурный напор мал, немногочисленные возмущения от отрывающихся пузырей не оказывают существенного влияния на осредненную во времени интенсивность теплоотдачи, и поэтому коэффициент теплоотдачи к кипящей жидкости может быть определен так, как будто никакого кипения и не происходит. По мере увеличения плотности теплового потока положение решительно изменяется интенсивность теплоотдачи начинает превышать уровень, отвечающий некипящей жидкости. Перемешивание жидкости вблизи поверхности нагрева из-за кипения столь энергично при больших тепловых нагрузках, что коэффициент теплоотдачи может оказаться почти независящим от того, развивается ли кипение в большом объеме или же при наличии вынужденного течения жидкости вдоль стенки.  [c.165]

В настоящее время явление возникновения кризиса теплоотдачи при кипении насыщенной жидкости в условиях вынужденной конвекции достаточно полно изучено многими исследователями. Обычно принято считать, что величина критической тепловой нагрузки определяется локальными значениями энтальпии, скорости и давления. При этом в большинстве случаев не принилга-лось во внимание влияние на критическую тепловую нагрузку условий течения пароводяной смеси. Кроме того, остался недостаточно выясненным вопрос о режиме течения двухфазного потока непосредственно перед возникновением кризиса теплоотдачи.  [c.232]

Опыты Брамлея по теплоотдаче при вынужденном поперечном обтекании цилиндров в условиях пленочного кипения и больших скоростей течения жидкости (фиг. 121) привели к формуле  [c.360]

Естественно, что каждому режиму течения соответствуют определенные закономерности теплоотдачи, зависящие от режимных параметров потока и прежде всего от тепловой нагрузки и паросодержания. На картограмме теплоотдачи при вынужденном движении теплоносителя, изображенной на рис. 2.6, схематически показаны все режимы теплоотдачи. Здесь же штрихпунктиром нанесена область кризиса второго рода (высыхания пленки), существующая в узком диапазоне параметров. Как видно из картограммы, режим теп.лоотдачи за счет испарения жидкости при вынужденной кон-  [c.42]


Теплоотдача при вынужденной конвекции в пленке. Рассмотрим перенос тепла в движуш ейся пленке без кипения к однофазной жидкости. Как указывалось выше, суш ествуют несколько режимов течения ламинарной и турбулентной пленки со сложной системой волн. В настоящем параграфе при анализе теплоотдачи в пленке волновое движение на ее поверхности учитываться не будет (гладкая поверхность), б Ф Smin Ф бтах-  [c.113]

При вынужденном течении соды в трубах может доходить до 5 ООО ккал м час град и более, а для пара, конденсирующегося на холодной стейке или при кипении жидкости—на поверхности нагретой стенки, коэффициент теплоотдачи нередко превышает 10 000 ккал м час град.  [c.15]

Для того чтобы судить, насколько различен коэффициент теплоотдачи в отдельных случаях переноса энергии, приведем некоторые его величины, полученные из опыта. В условиях естественной конвекции воздуха у поверхности плоской стенки при комнатной телшературе а= 10 -ч-10 вт м-град. В условиях вынужденного течения этого же воздуха в зависимости от скорости перемещения коэффициент теплоотдачи может быть а = = 10 -т-10 вт1м град. При турбулентном течении жидкостей в трубах, в зависимости от рода жидкости и скорости течения, коэффициент теплоотдачи находится в широком диапазоне изменения от 10 до 10 втЫ град. В условиях кипения различных жидкостей  [c.48]


Смотреть страницы где упоминается термин Теплоотдача при вынужденном течении жидкостей : [c.138]    [c.144]    [c.150]    [c.220]    [c.363]   
Смотреть главы в:

Термодинамика и теплопередача  -> Теплоотдача при вынужденном течении жидкостей



ПОИСК



Вариационный метод расчета теплоотдачи при вынужденном течении жидкости в трубах произвольного поперечного сечения. Перевод Готовского

Особенности теплоотдачи при вынужденном течении в трубах вязкопластичных жидкостей

Теплоотдача

Теплоотдача при вынужденном течении

Теплоотдача при вынужденном течении жидкости в труОсобенности движения и теплообмена в трубах

Теплоотдача при вынужденном течении жидкости в трубах

Теплоотдача при вынужденном течении жидкости в трубах и каналах

Течение в жидкости



© 2025 Mash-xxl.info Реклама на сайте