Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь и сплавы химический состав

ГОСТ 16130—72 регламентирует химический состав проволоки и прутков из меди и сплава на медной основе для сварки, наплавки п пайки. Стандарт регламентирует 17 марок проволоки и 12 марок прутков. Обозначение марок соответствует буквенным и цифровым обозначениям, принятым для меди и ее сплавов  [c.88]

Состав и свойства. Химический состав. Основными легирующими элементами деформируемых сплавов (табл. 7) являются медь, магний, марганец, цинк, кремний, а также титан, хром, бериллий, никель, цирконий, железо и др.  [c.13]


Медно-никелевые сплавы — сплавы на основе меди, в которых основным легирующим компонентом является никель. По назначению их подразделяют на 2 группы — конструкционные и электротехнические. Химический состав и назначение медно-никелевых сплавов приведены в табл. 24.  [c.88]

ГОСТ 16130—90 регламентирует химический состав и диаметры сварочной проволоки (0,8...8,0 мм) и прутков (6 и 8 мм) из меди и сплавов на медной основе. Этот стандарт также содержит рекомендации по применению проволоки прутков.  [c.96]

ГОСТ 16130-90 "Проволока и прутки из меди и сплавов на медной основе сварочные" регламентирует химический состав, диаметры проволок (0,8. .. 8,0 мм) и прутков (6 и 8 мм). Этот стандарт содержит также рекомендации по применению проволок и прутков.  [c.59]

ХИМИЧЕСКИЙ СОСТАВ И МЕХАНИЧЕСКИЕ СВОЙСТВА ЦВЕТНЫХ МЕТАЛЛОВ И ИХ СПЛАВОВ Химический состав и механические свойства меди различных марок (по ГОСТ 859-41)  [c.117]

Химический состав проволоки и прутков из меди и сплавов на медной основе (ГОСТ 16130—72)  [c.34]

Таблица 98. Химический состав некоторых типовых марок меди и ее сплавов, % Таблица 98. <a href="/info/9450">Химический состав</a> некоторых типовых марок меди и ее сплавов, %
Баббиты — сплавы олова, свинца, сурьмы и меди, применяемые для заливки вкладышей подшипников. Химический состав баббитов предусмотрен ГОСТ 1320—74. Баббиты обладают наименьшим коэффициентом трения по черным металлам, низкой твердостью и хорошей прирабатываемостью.  [c.241]

Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности.  [c.4]


Химический состав, скорости коррозии и типы коррозии, коррозионные характеристики под напряжением и вызванные коррозией изменения механических свойств меди приведены в табл. 86—89. Влияние длительности экспозиции на коррозию медных сплавов графически показано на рис. 105 и 112.  [c.250]

Химический состав в % (медь — остальное) и назначение медно-никелевых сплавов (по ГОСТам 4д2 52, 10155—62 и 10092 — 62)  [c.89]

Основными компонентами металлокерамических фрикционных материалов являются медь, олово, свинец и графит. Ряд сплавов содержит также железо, кремний и цинк. Типовой химический состав фрикционных сплавов 60—750/0 Си, 5-100/0 5п, 6—150/0 РЬ. 5-80/0 графита, до 2°/о 51, до Юо/о Ре.  [c.265]

Силумины — сплавы алюминия с кремнием, добавляемым в количестве от 4 до 13 %. Для повышения прочности в некоторые силумины вводят медь, магний и другие элементы. В начале марки литейного алюминиевого сплава пишут буквы АЛ, что означает алюминиевый литейный сплав . За буквами следует цифра, определяюш,ая химический состав сплава, например, АЛ2, АЛ4 и т. д.  [c.233]

Условное обозначение марок цветных металлов и их сплавов (156). Медь и ее сплавы (157). Примерное назначение меди (158). Сводная таблица сортамента полуфабрикатов из меди (159). Химический состав латуней (160). Примерное назначение латуней (162). Сводная таблица сортамента полуфабрикатов из латуни (163). Химический состав бронз (164). Механические свойства бронз (166). Примерное назначение бронз (166). Сводная таблица сортамента полуфабрикатов из бронзы (169).  [c.534]

Кроме этого, при выборе сплава нужно учитывать огромное значение возможности использования отходов (литников, выпоров, стружки, бракованных деталей). Необходимо, чтобы эти отходы имели приблизительно одинаковый химический состав, близкий к составу сплава, применяемого для изготовления отливок. В лучшем случае это достигается применением для всех отливок одного сплава (например, АЛ4). Допустимо применение нескольких однородных сплавов (например, АЛ4, АЛ9, АЛ2), но не допустимо применение на одном заводе сплавов, содержащих и не содержащих медь (например АЛ4 и АЛ5). Практика показывает, что разделение отходов по сплавам в заводских условиях не достижимо.  [c.90]

Согласно тройной диаграмме состояния, сплавы медь — олово — фосфор в равновесных условиях образуют после затвердевания однородный а-твердый раствор при наличии в них олова до 10<>/о и фосфора до 0.3 /о- При том же содержании олова, но при наличии фосфора более О.З / , наряду с тройным а-твердым раствором появляются новые структурные составляющие — фосфиды меди и тройная эвтектика, придающие высокую износостойкость бронзе. Химический состав тройной эвтектики следующий меди 80.7 /о, олова 14.8 /о и фосфора 4.5 /о. Температура ее образования установлена равной 628°.  [c.305]

Вакуумно-дуговой переплав осуществляется под вакуумом, поэтому нельзя забывать о возможных потерях элементов с высокой упругостью пара. Однако многие из этих элементов представляют собой "сорные примеси", способные, если при-. сутствуют в достаточных количествах, оказывать пагубное влияние на свойства сплава иными словами, удаление таких элементов, как свинец, висмут, олово, мышьяк и цинк, является благоприятным событием. Но опасность потерь в таких летучих элементах, как марганец и медь в сплавах, где их содержание строго определено, требует некоторых изменений в практике вакуумно-дугового переплава. В этих случаях плавку ведут под некоторым парциальным давлением азота или аргона, либо заблаговременно оптимизируют исходный химический состав электрода. Важно понимать, что вакуумно-дуговой переплав не был предназначен для удаления летучих элементов. Следует помнить и то, что эти элементы, даже если они полезны в том или ином отношении, понижают стабильность дуги. Когда же они образуют мощный конденсат на стенках изложницы, происходит серьезное ухудшение качества поверхности слитков.  [c.139]

Оловянные бронзы имеют высокие антифрикционные свойства и коррозионную стойкость. Бронзы алюминиевые и кремнистые обладают высокими механическими свойствами и коррозионными свойствами, дешевле оловянных. Марганцовистые бронзы имеют хорошую коррозионную стойкость и повышенную жаропрочность. Бериллиевые бронзы после термообработки приобретают прочность, сопоставимую с прочностью стали. Химический состав типовых марок меди и ее сплавов приведены в табл. 12.8.  [c.454]


Таким образом, в процессе кристаллизации, которая происходит в интервале температур, состав жидкого сплава меняется по линии ликвидуса, а состав твердого раствора — по линии солидуса. Это легко подтверждается экспериментально, если с помощью фильтра разделить кристаллы твердого раствора и жидкого сплава, отвечающего определенной температуре, и произвести химический анализ разделенных фаз. Как видно из диаграммы состояния сплавов никеля с медью (фиг. 57), в начале затвердевания выделяющиеся кристаллы твердого раствора более богаты тугоплавким компонентом (в данном случае — никелем), а оставшийся жидкий сплав обогащается более легкоплавким компонентом (в данном случае— медью).  [c.94]

В Англии изучается не содержащий хрома сплав с добавками серебра и циркония [162]. Химический состав этих сплавов близок составу сплава МА-15 (фирма Al oa ), сплаву 2 (фирма Reynolds ) и сплаву 21 (фирма Boeing ), (табл. 14). За исключением высокого содержания меди в сплаве МА-15 и добавок серебра в английском сплаве, химический состав этих сплавов является очень схожим.  [c.275]

Марки сплавов, химический состав тип кристаллической структуры и на личие магнитной анизотропии норми рованы ГОСТ 17809—72 (табл. 22) Названия марок сплавов составлены из условных буквенных обозначений (табл. 23) химических элементов, входящих в сплав (не считая железа). Цифры определяют процентное содержание того элемента, за буквенным обозначением которого они следуют. Например, марка ЮНДК35Т5Б означает сплав железа с алюминием, никелем, медью, кобальтом, титаном и ниобием. Процентное содержание кобальта и титана соответственно 35 и 5%. Марка ЮНДК35Т5БА означает сплав железа с алюминием, никелем, медью, кобальтом и ниобием со столбчатой кристаллической структурой, а марка ЮНДК35Т5АА — сплав железа с алюминием, никелем, медью, кобальтом и титаном с моно-кристаллической структурой.  [c.97]

Кадмиевые, магниевые и серебряные бронзы. Эти бронзы (БрКд1, БрМгО,3, БрСрО,1) относятся к проводниковым сплавам. Химический состав и назначение приведены в табл. 19.21. Указанные бронзы являются однофазными. Наиболее широко применяются первые два сплава. Они прочнее меди и обладают наиболее высокой электропроводностью среди медных сплавов. Упрочняются, как и медь, только пластической  [c.750]

Новой группой твердых сплавов являются безвольфрамовые твердые сплавы, в которых карбид вольфрама заменен карбидом титана или карбонитридом титана, а в качестве связки используются никель, железо, молибден. Сплавы отличаются высокой окалиностойкостью, малым коэффициентом трения, пониженной склонностью к адгезии, меньшей плотностью, пониженной прочностью, склонностью к трещинообразованию при напайке. Они показывают хорошие результаты при получистовой обработке резанием вязких металлов, конструкционных и малолегированных сталей, меди, никеля и др. Химический состав и физико-механические свойства безвольфрамовых твердых сплавов приведены в табл. 2.8 там же указаны и параметры их микроструктуры. Форма и конструктивные размеры изделий из сплавов типа ТНМ должны соответствовать требованиям ГОСТ 2209 —69, ГОСТ 17163—71 и ТУ 48-10-113—74.  [c.87]

Наибольшее распространение в качестве машиностроительных материалов получили упрочняемые алюминиевые сплавы дуралюмины и сплав В95. Дуралюмины являются сложными алюминиевыми сплавами. В их состав, кроме алюминия, входят медь, магний и марганец, а также примеси, обычно содержащиеся в алюминии, — железо и кремний. Химический состав некоторых марок дуралюминов в процентах приводится ниже.  [c.229]

Химическое оксидирование в персульфатно-щелочном растворе. Состав раствора и режим работы для оксидирования меди и сплавов, богатых медью, следующие  [c.56]

Бронзы представляют собой сплавы меди с цинком, алюминием, марганцем, кремнием, бериллием, железом и другими элементами. Бронзу называют по основному легирующему компоненту. Бронзы делятся на две больщие группы оловянные, химический состав которых определяется ГОСТ 18175-78, 5017-74, 613-79, и безоловянные, химический состав которых определяется ГОСТ 493-79 и 18175-78.  [c.116]

Для производства деталей машин и приборов использунзт черные металлы (стали (1 чугуны), цветные металлы (медь, алюминий, сплавы на их основе и др.), неметаллические материалы (пластические массы, стекло, дерево и др.). Заводы-поставщики в соответствии с государственными стандартами гарантируют химический состав материалов и определенные механические свойства.  [c.158]

Предлагается следующий состав химического палладирования (моль/л) палладий хлористый 0,05 пирофосфат натрия 0,11 фторид аммония 0,3 аммиак 8, гипофосфит иатрия 0,05, pH 10, температура 45—55 °С скорость осаждения 3—4 мкы/ч Из указанного раствора были получены светлые, гладкие палладиевые аокрытия толщиной до 10 мкм на меди и медных сплавах, на никеле, кобальте и их сплавах, серебре и платине.  [c.88]

В табл. 1.8 приведены марки стали и сплавов, рекомендуемых ЦКБ А для энергетической арматуры АЭС. В табл. 1.9 и 1.10 приведены марки материалов, которые применяют зарубежные фирмы для изготовления узлов и деталей арматуры для АЭС, а в табл. 1.11 — химический состав материалов этих марок Механические характеристики легированных сталей, применяемых в арматуро строении, приведены в табл. 1.12—1.14. В обозначениях марок стали буквы обо значают А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь Е — селен, К — кобальт, М — молибден, Н — никель, Р — бор, С — кремний  [c.27]

Медноникелевые сплавы — сплавы на основе меди, в которых основным легирующим компонентом является никель. По назначению они подразделяются на две группы — конструкционные и электротехнические сплавы. Марки, химический состав и назначение медно-нпкелевых сплавов приведены в табл. 39, а виды полуфабрикатов и их механические свойства — в табл. 40.  [c.165]


Эмаль для цветных и благоро.д-ных металлов. В табл. 144 приведён химический состав эмали для цветных и благородных металлов и их сплавов—меди, томпака, латуни, бронзы, мельхиора (нейзильбера), серебра, золота и др.  [c.387]

Примечание. Химический состав сплава проволоки (o hobhi хрома до 23. титана до 0.4—2,9. марганца 0,5—0,7, кремния 0.8—1, до 2,5. меди и алюминия 0.2-1.1.  [c.998]

Условное обозначение марок цветных металлов и их сплавов (109). Медь а ее сплавы (110). Примерное назначение меди (112). Химический состав латуней (ИЗ). Примерное назначение латуней (115). Механические свойства литейных латуней (116). Химический состав бронз (117). Механические свойства броиз (119). Примерное назначение бронз (119).  [c.538]

Самофлюсующиеся порошки получили наибольшее распространение в практике восстановительно-упрочняющих технологий. Особое преимущество материалов этого класса состоит в том, что качественное оплавление покрытия происходит без применения дополнительных флюсов или защитных сред. Химический состав сплавов обеспечивает пониженную температуру плавления, расплав хорошо смачивает наплавляемую поверхность, удаляет оксидные пленки, частично растворяет подложку, что в конечном итоге приводит к формированию высококачественного покрытия с минимальной пористостью, высокой прочностью сцепления с основой и ровной, гладкой поверхностью. Основными элементами, обеспечивающими самофлюсование сплава, являются бор и кремний. Эти элементы имеют высокое сродство к кислороду. При взаимодействии с оксидами они ведут себя как энергичные восстановители, образуя В2О3 и SiOj в виде стекловидного шлака на поверхности, защищая таким образом металл от окисления. Помимо флюсования бор и кремний улучшают жидкотекучесть и уменьшают поверхностное натяжение расплава. В настоящее время выпускают самофлюсующиеся порошки на основе кобальта, никеля и железа. Есть сведения о самофлюсующихся порошках на основе меди.  [c.195]

Стали и сплавы с заданным температурным коэффициентом линейного расширения (ГОСТ 10994—74) предназначены для впаивания изделий на их основе в стеклянные и керамические корпуса вакуумных приборов. Химический состав этих сплавов базируется на системе Fe + Ni + Со с небольшим количеством меди. Точный состав каждого сплава устанавливается для конкретного вида стекла или керамики, используемых в изделиях, из условия равенства их температурных коэффициентов линейного расширения. Например, сплав 29НК (29% Ni, 18% Со, остальное - Fe) с а = (4,6...5,5) 10-6° -i, называемый коваром, предназначен для вакуумных впаев в молибденовые стекла. Для изготовления деталей, спаиваемых со стеклом (например, в телевизионных кинескопах), применяют более дешевые ферритные железохромистые сплавы 18ХТФ и 18ХМТФ, имеющие а = 8,7 10 ° "i.  [c.182]


Смотреть страницы где упоминается термин Медь и сплавы химический состав : [c.25]    [c.301]    [c.121]    [c.304]    [c.329]    [c.85]    [c.90]    [c.199]    [c.166]    [c.213]    [c.217]   
Морская коррозия (1983) -- [ c.92 , c.251 ]



ПОИСК



Для тугоплавких сплавов Химический состав и температура плавлени медь фосфор Химический соста

Для тугоплавких сплавов Химический состав и температура плавлени на основе меди и других цветных металлов

Медиана

Меднение — Удаление недоброкачественных покрытий 1.104 — Электролитическое осаждение сплавов на основе меди в работе ванн 1.102 — Составы растворов и их особенности 1.101, 102Составы растворов и режимы химического меднения 2.31 — Химическое

Медь и сплавы

Медь и сплавы меди

Медь химический состав

Применение серебряные — Диаграмма состояния сплавов системы медь—серебро 70 Применение 70, 74 — Свойства 70—74 — Химический состав

Свойства медно-цинковые — Диаграмма состояния сплавов системы медь—цинк 59Марки 60—63 — Применение 61 — Свойства 60—63 — Химический состав

Составы меди и ее сплавов

Сплавы Состав

Сплавы Химический состав

Химический состав меди и медных сплавов



© 2025 Mash-xxl.info Реклама на сайте