Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Малые свободные колебания системы с одной степенью свободы

МАЛЫЕ СВОБОДНЫЕ КОЛЕБАНИЯ СИСТЕМЫ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ  [c.389]

Подставляя эти величины в уравнение (131), получим следующее дифференциальное уравнение малых свободных колебаний системы с одной степенью свободы  [c.390]

Свободные колебания при неучете сопротивления. Рассмотрим систему с одной степенью свободы, например, невесомую консоль с прикрепленной на ее конце массой (рис. 17.40,а). Дифференциальное уравнение, описывающее малые свободные колебания системы с одной степенью свободы при отсутствии сопротивления.  [c.91]


Рассматривая эти зависимости, можно сделать следующие выводы о малых (линейных) свободных колебаниях системы с одной степенью свободы.  [c.94]

Дифференциальное уравнение малых свободных колебаний системы с одиой степенью свободы. Пусть имеется система с одной степенью свободы. Исследуем движение системы около положения устойчивого равновесия.  [c.213]

Первая лекция. Важность изучения колебательных движений при рассмотрении многих вопросов современной техники. Причины возникновения колебаний. Свободные колебания систем с одной степенью свободы. Типичные примеры колебания груза на пружине, крутильные колебания диска, колебания груза на конце консоли, малые колебания математического и физического маятника. Условия, при которых упомянутые системы можно рассматривать как системы с одной степенью свободы. Общность рассмотренных задач. Интегрирование дифференциального уравнения свободных колебаний. Параметрическая структура коэффициента жесткости. Возникновение нелинейных задач теории колебаний.  [c.22]

Малые свободные колебания механической системы с одной степенью свободы около положения устойчивого равновесия.  [c.370]

Определить частоту и период малых свободных колебаний механической системы с одной степенью свободы, пренебрегая силами сопротивления и массами нитей.  [c.344]

Малые колебания механической системы с одной степенью свободы. Потенциальная и кинетическая энергия системы при малых колебаниях вблизи положения устойчивого равновесия. Критерий устойчивости положения равновесия. Свободные, затухающие и вынужденные колебания гармонического осциллятора. Явление резонанса.  [c.150]

До сих пор мы рассматривали свободные колебания консервативной системы с одной степенью свободы около положения устойчивого равновесия. При отсутствии сил сопротивления дифференциальное уравнение малых колебаний имеет вид  [c.468]

Понятие об устойчивости равновесия. Малые свободные колебания механической системы с одной степенью свободы около по-ложе ия устойчивого равновесия системы и их свойства.  [c.10]


Малые свободные колебания с одной степенью свободы системы материальных точек с учетом силы сопротивления (диссипативной силы) имеют вид  [c.170]

Обратимся теперь к изучению малых колебаний, совершаемых системой около устойчивого равновесного положения. Мы начнем с рассмотрения колебаний сисгемы, обладающей одной степенью свободы. В этом параграфе мы рассмотрим собственные, или свободные колебания такой системы.  [c.372]

Одним из наиболее плодотворных применений уравнений Лагранжа 2-го рода является изучение малых колебаний механических систем около положения равновесия. Мы ограничимся рассмотрением случая малых свободных колебаний механической системы, имеющей s степеней свободы, около положения устойчивого равновесия. Как было указано, потенциальная энергия системы V qu <72, .., < s) определяется с точностью до произвольной постоянной. Мы можем выбрать начало отсчета координат qt, 2,. . qs таким образом, чтобы положению равновесия соответствовали значения i=0, 2=0,. . s = 0 и Vo=0. Кроме того, в главе VI раздела Кинетика мы доказали, что при равновесии консервативной системы имеют место следующие условия  [c.501]

Пример 1. Время затухания для картонной трубки. Попытаемся применить уравнение (28) к системе со многими степенями свободы. Возьмем картонную трубку, внезапно возбудим ее ударом и предоставим колебаниям свободно затухать. Удар возбудит главным образом самую низкую моду, для которой длина трубки равна половине длины волны. Система начнет колебаться. С концов трубки происходит испускание звуковой энергии, кроме того, некоторое ее количество теряется из-за трения воздуха о стенки трубки (т. е. звуковая энергия переходит в тепло). Таким образом, мы имеем затухающие колебания. Спрашивается, какова постоянная времени затухания этих колебаний Ваше ухо легко различит преобладающую частоту. Ту же частоту вы услышите, если постоянно дуть в конец трубки. Однако время затухания в этой системе слишком мало, чтобы его можно было измерить на слух. Есть две возможности. Возьмите микрофон, усилитель звуковой частоты и осциллограф. Включите развертку осциллографа в момент возбуждения колебаний и выход усилителя подайте на вертикальные пластины. (В хорошем осциллографе развертка может включаться внешним сигналом.) Сфотографировав след на экране осциллографа, вы можете прямо измерить т. Однако это можно сделать и иначе. Подайте выходное напряжение звукового генератора на небольшой громкоговоритель, установленный около одного конца трубки. В трубке возникнут установившиеся вынужденные колебания, частота которых будет задана звуковым генератором. Установите микрофон у другого конца трубки и измерьте с его помощью звуковое излучение с этого конца. Выход микрофона подайте на осциллограф, на экране которого можно будет измерить амплитуду звуковых колебаний. Теперь измените частоту генератора и т. д. Экспе-  [c.110]

Аналогичным путем мы можем доказать, что если система подвергается изменению, при котором потенциальная энергия данной конфигурации уменьшается, между тем как кинетическая энергия заданного движения остается неизменной, то периоды всех свободных колебаний увеличиваются, и наоборот. Этим предложением можно иногда воспользоваться для того, чтобы проследить за эффектом связи действительно, если мы предположим, что потенциальная энергия какой-нибудь конфигурации, нарушающей условие, налагаемое связью, постепенно возрастает, то мы приблизимся к такому положению вещей, когда данное условие наблюдается с любой желаемой степенью полноты. В течение каждого шага процесса каждое свободное колебание становится (вообще) более быстрым, и часть свободных периодов (в количестве равном числу потерянных степеней свободы) становятся бесконечно малыми. Практически того же самого результата можно достигнуть без изменения потенциальной энергии, предположив, что кинетическая энергия какого-нибудь движения нарушающего условие, налагаемое связью, беспредельно возрастает. В этом случае один или несколько периодов становятся бесконечно большими, но конечные периоды оказываются в конце концов теми же самыми, к каким мы приходим, увеличивая потенциальную энергию системы, несмотря на то, что в одном случае периоды только возрастают, а в другом только убывают. Этот пример показывает, насколько необходимо делать изменения последовательными шагами в противном случае нам не удалось бы понять соответствия между двумя группами периодов. Дальнейшие иллюстрации будут даны для случая двух степеней свободы.  [c.133]


Рассмотрим свободные колебания механической системы с одной степенью свободы и = 1. Уравнение, ониеываюш ее малые свободные колебания имеет вид  [c.168]

Любая упругая система независимо от числа и характера наложенных на нее связей представляет собой систему с бесконечным числом степеней свободы, но при переходе к расчетной схеме она может быть заменена системой с конечным числом степеней свободы (или даже с одной степенью свободы). Проиллюстрируем сказанное на примере консольной балки с грузом на свободном конце (рис. 13-17, а). Если допустить, что. масса груза значительно больше массы балки и груз имеет такую форму и размеры, что момент инерции его относительно осей, проходящих через центр тялсести, мал, а жесткость балки значительна (прогибы малы) и рассматриваются только колебания в вертикальной плоскости, то координата а перемещения конца балки полностью определяет положение системы в любой момент времени. Следовательно, система может рассматриваться как обладающая одной степенью свободы (рис. 13-17, б). Несоблюдение хотя бы одного из сделанных выше предполсжений о характере величин, определяющих колебания системы, привело бы улсе к другой расчетной схеме. Если существенными в задаче являются не только колебания в вертикальной плоскости, но и любые другие, так что конец балки описывает в общ,ем случае какую-то плоскую кривую, то, раскладывая движение груза на вертикальную и горизонтальную составляющие, получаем расчетную схему (рис. 13-17, в), соответствующую системе с двумя степенями свободы.  [c.341]


Смотреть страницы где упоминается термин Малые свободные колебания системы с одной степенью свободы : [c.587]    [c.217]   
Смотреть главы в:

Краткий курс теоретической механики  -> Малые свободные колебания системы с одной степенью свободы



ПОИСК



Дифференциальное уравнение малых свободных колебаний системы с одной степенью свободы

Колебания малые

Колебания малые свободные

Колебания с одной степенью свободы

Колебания свободные

Колебания системы с одной степенью сво

Колебания системы с одной степенью свободы

Малые колебания системы

Малые колебания системы с одной степенью свободы

Малые с одной степенью свободы

Малые свободные колебания механической системы с одной степенью свободы около положения устойчивого равновесия

С одной степенью свободы

Свободные колебания с одной степенью свободы

Свободные колебания системы с одной степенью свободы

Система малых ЭВМ

Система с одной степенью свободы

Система свободная

Системы с одной степенью свободы Системы с одной степенью свободы

Степени свободы системы

Степень свободы



© 2025 Mash-xxl.info Реклама на сайте