Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Допущения

В. И. Дятлов предложил сделать допущение, что фактическая форма провара представляет собой полуэллипс, площадь которого равна площади полуокружности, определенной по формуле (22). Площадь полуэллипса, одна из полуосей которого равна е/2, а другая Н может быть определена,  [c.187]

Рассмотрим решение задачи для частного случая, когда распределения нагрузки и несущей способности подчиняются нормальному закону. Этот случай имеет широкое применение и позволяет получить простое замкнутое решение. Применение нормального закона оправдано в случае совместного действия достаточно большого числа случайных-возмущений, подчиняющихся различным законам распределения если среди них нет превалирующего, то результирующее возмущающее воздействие согласно центральной предельной теореме теории вероятностей имеет распределение, близкое к нормальному. На практике распределения многих возмущений отличны от нормального хотя бы потому, что целый ряд параметров (предел прочности, размеры и т.п.) не могут быть величинами отрицательными. Но усечения законов распределения обычно невелики, что позволяет игнорировать теоретическую нестрого сть допущения нормального распределения.  [c.8]


Это уравнение является, по существу, и допущением о виде уравнения состояния материала оно описывает материалы, для которых напряжение изотропно, и, следовательно, может быть полностью определено одной скалярной величиной (давлением). Таким образом, это допущение заключается в том, что давление полностью определено мгновенными значениями удельного объема и температуры.  [c.147]

Уравнения (4-4.4) — (4-4.6) получаются на основании первого и второго законов термодинамики, применяемых к материалам, состояние которых (давление, свободная энергия и т. п.) определяется только текущими значениями Г и F. Уравнения (4-4.5) и (4-4.6) представляют собой ограничения, налагаемые законами термодинамики на допущения о состоянии материала в том смысле, что запрещается постулировать такие уравнения состояния, скажем, для А -а Р, которые не удовлетворяют (4-4.5). В последующем рассмотрении увидим, как получаются соответствующие уравнения (или ограничения) для материалов с памятью. Мы столкнемся с тем дополнительным осложнением, что напряженное состояние нельзя, вообще говоря, рассматривать как изотропное.  [c.149]

Предположим, что функция а ( ) дифференцируема по Т при рассмотрении материалов с памятью это окажется весьма важным допущением. Имеем  [c.152]

Далее будет развита термодинамическая теория, основанная на допущении о состоянии материала, воплощенном в уравнении (4-4.36) подробности приводиться не будут — читатель отсылается за ними к оригинальным работам [6, 7].  [c.161]

Теперь мы хотим исследовать следствия из допущения о состоянии, зафиксированного в уравнении (4-4.36).  [c.161]

В (4-4.16), при условии, что она не входит явно в качестве независимой переменной в уравнения состояния. Это является фактически допущением о состоянии материала (см. уравнение (4-4.36)), но следует подчеркнуть, что чисто вязкие жидкости в этом отношении исключаются из анализа ). На этом основании для того, чтобы соотношение (4-4.41) выполнялось для всех процессов, член, содержащий D, должен быть тождественно равен нулю. Следовательно, тензор, стоящий в соотношении (4-4.41) в квадратных скобках, должен быть изотропным. Итак, получаем  [c.162]

К сожалению, механические и термические эффекты не могут в данном случае быть несвязанными, поскольку нет способа доказать, что т не зависит от или что q не зависит от D. Разумеется, если мы захотим ввести дополнительное допущение о состоянии, что т не зависит от Т, то из этого будет следовать, что скорость механической диссипации должна быть неотрицательной. В общем случае можно утверждать, что Ощ О лишь в изотермических процессах (V7 = 0). Из этого следует, что изотермические (т. е. чисто механические) уравнения состояния для чисто вязких жидкостей всегда должны давать положительные значения для >м- В частности, оправданы рассуждения в разд. 2-3.  [c.165]


В гл. 5 рассматривались результаты применения теории простых жидкостей к ряду реологических течений. В каждом из рассматриваемых случаев задача сводилась к определению нескольких материальных функций, которые следует определять экспериментально при отсутствии вспомогательных допущений. В общем случае нельзя получить теоретических соотношений, касающихся материальных функций для реологических течений различного типа. Напротив, если выбрать частное уравнение состояния, то вид материальных функций можно найти априори, и лишь небольшое число параметров подлежит экспериментальному определению. Кроме того, это позволяло установить определенные соотношения, касающиеся результатов для различных типов реологических течений.  [c.210]

Действительно, можно сказать, что весь исследовательский процесс, проводившийся на протяжении нескольких последних десятилетий,— введение частных допущений о состоянии, получение при их помощи определенных результатов и их экспериментальная проверка — является, по существу, методом проб и ошибок, который, можно сказать, далек от удовлетворительного завершения. Нашей целью является построение для некоторых специальных материалов такого уравнения состояния, которое отражало бы наблюдаемые на практике свойства этих материалов и в то же время было бы математически достаточно простым для использования в инженерных приложениях. Разумеется, желательно при этом, чтобы число параметров, подлежащих экспериментальному определению, было по возможности ограниченным.  [c.211]

Отступления от заданного чертежом класса точности размеров недопустимы, так как они неизбежно приводят к неисправимому браку или затратам значительного времени на исправление допущенной ошибки.  [c.97]

Выполнить чертеж с исправлением допущенных на нем ошибок.  [c.302]

В расчете было сделано допущение, что все тепловыделение происходит только в топливном слое твэлов и отсутствует термическое сопротивление при тепловом потоке от топливного слоя к графитовой оболочке в гетерогенном твэле.  [c.94]

В предложенной модели слой состоит из двух областей 1 — область повышенной порозности в пределах половины диаметра частиц от цилиндрической теплообменной поверхности 2 — область за пределами первой. Основные допущения  [c.77]

Для области 1 получено аналитическое решение при упрощающем допущении постоянства температуры Ti на границе раздела, вдоль всей ее длины с областью 2. Решение уравнения переноса тепла для области 2 найдено с помощью численных методов.  [c.78]

Г. При рассмотрении трения в винтовой кинематической паре обычно делают целый ряд допущений. Во-первых, так как закон распределения давлений по винтовой резьбе неизвестен, то условно считают, что сила давле11ия гайки на винт или, наоборот, винта на гайку приложена по средней линии резьбы. Средняя линия резьбы расположена на расстоянии г от оси винта (рис. 11.18, а). Во-вторых, предполагается, что действие сил в винтовой паре может быть сведено к действию сил на ползун, находящийся на наклонной плоскости. Развертывая среднюю линию винтовой резьбы на плоскость, сводят пространственную задачу к плоской, для чего поступают следующим образом (рис. 11.18, б).  [c.225]

Чтобы получить определенные результаты, снова используем конкретные реологические допущения. Использование уравнения Максвелла (6-4.12) или эквивалентного ему уравнения (6-4.19) позволяет получить результаты, приводившиеся в работе Денна и Марруччи [37]. Эти результаты можно кратко сформулировать в следующем виде.  [c.292]

Исходя из принципиальной структурной схемы днищ по конструктивно-геометрическим признакам [ 21, в основу класс1 икации положено допущение о том, что любая листоштампованная деталь может быть представлена одним из конструктивных элементов типа "стенка" или "борт" или их сочетанием.  [c.4]

Формулы (1.164) п (1.168) получены при пспользовашш ряда упрощающих допущений справедливость закона Гука при деформации труСы и жидкости, отсутствие трения в жидкости и других видов рассеивания энергии в процессе удара и равномерность распределения скоростей по сечеиию трубы.  [c.146]

Задание 77 можно выполнять в виде устного указания всех графических ои1и-бок, допущенных на чертеже, без перечерчивания последнего.  [c.300]

Количественные зависимости между параметрами шаровой ячейки были найдены графоаналитическим путем, причем учитывалась возможность трансформации кубической укладки как в тетраоктаэдрическую, так и в октаэдрическую. В принципе, ячейка Слихтера требует касания шаров, и объемной пористости больше, чем в кубической укладке, она иметь не может. Поэтому было сделано допущение, что возможна раздвижка некоторых шаров. Значит, число касаний в ячейке станет меньше шести. Для этого была сделана экстраполяция количественных зависимостей (2.16) и (2.17) за предельное значение пористости т для кубической укладки. Автором данной работы были предложены для шаровых укладок следующие зависимости  [c.45]


Для теоретического расчета сопротивления при течении теплоносителя через ячейку шаровых элементов можно использовать теорию турбулентных свободных струй, разработанную Г. Н. Абрамовичем [30]. При этом необходимо сделать одно существенное допущение, что форма поперечного сечения струи в просвете ячейки не оказывает заметного влияния на потери энергии при расширении струйки. В этом случае потери энергии могут быть определены по зависимостям для осесимметричной круглой струи с диаметром устья струи, равным ёгадр в просвете шаровой ячейки.  [c.53]

Однако принятые допущения сомнительны, так как в реальном слое скорость подъема пузырей благодаря слиянию возрастает, что приводит к уменьшению времени пребывания их в слое. В слоях с поршнеобразованием скорость подъема пузырей (поршней) будет меньше скорости, определяемой выражением Девиса — Тэйлора, а расширение слоя соответственно больше [46]. Матеен [47] показал, что максимальная высота слоя при образовании поршней равна  [c.52]

Левеншпиль и Уолтон [73] для определения эффективной толщины газовой пленки сделали допущение, что она разрушается каждый раз в точке соприкосновения частицы с поверхностью теплообмена, и толщина пленки постепенно нарастает по законам ламинарного движения между двумя последовательными контактами частиц со стенкой, промежуток между которыми определяется по-розностью слоа, В результате авторы [73] получили выражение в виде зависимости безразмерных комплексов, которые можно использовать для описания экспериментальных данных, хотя полученная формула неудовлетворительно согласуется с экспериментами и для их корреляции необходимо варьировать величинами пред-экспоненты и показателя степени.  [c.59]


Смотреть страницы где упоминается термин Допущения : [c.161]    [c.154]    [c.156]    [c.211]    [c.110]    [c.75]    [c.146]    [c.162]    [c.397]    [c.300]    [c.301]    [c.305]    [c.307]    [c.313]    [c.315]    [c.54]    [c.58]    [c.59]    [c.65]   
Смотреть главы в:

Сопротивление материалов  -> Допущения



ПОИСК



176—Применение термоупругости — Допущения

Вариационные задачи при допущении возрастания энтропии

Введение (М. Н. Рудицын) Задачи и методы сопротивления материалов П Расчетные схемы. Основные допущения П Понятие о перемещениях и деформациях

Влияние исходных допущений на погрешности определения температур

Выбор методов исследования напряженно-деформированного состояния и несущей способности механически неоднородных сварных соединеОсновные условия и допущения

Главные допущения

Диаграммы Допущения при аналитической интерпретации

Диск Допущения

Дополнительные допущения

Дополнительные допущения для моделей МОП-приборов

Допущения ПОЛОГОЙ оболочки

Допущения в расчете вантовой сети

Допущения в расчете приближенном

Допущения для потоков в руслах с небольшими продольными уклонами

Допущения и вопросы, требующие особого внимания

Допущения и обсуждение параметров

Допущения и ограничения

Допущения и основные уравнения

Допущения и упрощения в теории распространения теплоты

Допущения и формальный аппарат в выводе Унцикера

Допущения о свойствах материала элементов конструкций

Допущения о свойствах материалов и характере деформаций

Допущения относительно свойств материалов и характера деформаций

Допущения теории пограничного слоя

Допущения, принимаемые в курсе Сопротивление материаВнешние силы (нагрузки)

Допущения, принимаемые при расчетах характеристик передач и выходных показателей приводов машин

Допущения, принимаемые при расчете характеристик пневматических камер

Допущения, принятые в расчете

Задачи сопротивления материалов. Понятия о деформациях, упругости и прочности. Основные допущения, примятые в сопротивлении материалов

Использование результатов гл. 3. Допущения наиболее простой методики План остальной части главы Справедливость первого допущения

Исходные допущения. Классификация пластин

Касательные напряжения при изгибе. Основные допущения. Формула Журавского для определения касательных напряжений при изгибе

Квантовомеханическое рассмотрение. Основные допущения и методы квантовой химии

Классификация вращающихся потоков по интенсивности закрутки и основные допущения

МАЛЫЕ ДЕФОРМАЦИИ И УСТОЙЧИВОСТЬ ТОНКИХ оболочек Основные допущения

Математическая модель допущения

Математическое описание задачи. Принятые допущения

Материалы конструкционные — Допущения о свойствах 169 — Модули

Материалы конструкционные — Допущения о свойствах 169 — Модули упругости и коэффициент Пуассон

Напряженное состояние допущения

ОСНОВНЫЕ ПОНЯТИЯ И ДОПУЩЕНИЯ

Обзор Дайсслера. Некоторые результаты современных теоретических раЗаметка о соотношениях между тепло- и массопроводимостями. Коэффициент диффузии Dj. Число Шмидта газов S Обоснование справедливости второго допущения

Обоснование допущений

Обсуждение допущений

Общее понятие о теории стесненного кручения стержней открытого профиля (теории Власова). Основные допущения

Общие определения и допущения

Общие решения. Постановка задачи. Общие положения и допущения

Общие характеристики и допущения

Описание процесса раскрытия поверхности паруса. Допущения и приближённые соотношения

Основное допущение в теории формообразования

Основное допущение в теории формообразования поверхностей деталей

Основное допущение элементарной (прецессионной) теории гироскопов

Основные гипотезы (допущения) о материале

Основные гипотезы и допущения

Основные допущения

Основные допущения в расчетах напряжений и деформаций. Модели материала

Основные допущения и гипотезы о свойствах материалов и характере деформации. Характеристика геометрии тел, рассматриваемых в сопротивлении материалов

Основные допущения и расчетные схемы

Основные допущения приближенной теории

Основные допущения, определение напряжений и деформаций при кручении круглого бруса

Основные допущения, принимаемые в сопротивлении материалов

Основные допущения, принимаемые при расчетах звуковых полей, излучаемых поверхностью

Основные допущения, принятые в сопротивлении материалов

Основные допущения, связанные с внешними силами

Основные определения и допущения

Основные положения Задачи сопротивления материалов. Основные допущения

Основные положения и допущения

Основные положения и допущения механики гибких стержней

Основные понятия, определения, допущения

Основные условия и допущения

Особенности предельного состояния толстостенных оболочковых конструкций, работающих под давлением, выбор критериев потери их несущей способности. Основные условия и допущения

Понятие о деформации упругой и пластической. Основные гипотезы и допущения

Понятие о расчетной схеме, основные гипотезы и допущения сопротивления материалов

Поперечные колебания пластинок Основные допущения и формулы

Поперечные колебания прямых стержней Основные допущения и уравнение поперечных колебаний прямого стержня

Постановка задач и основные допущения

Постановка задачи вхождения в связь и основные допущения

Постановка задачи. Исходные допущении

Правила испытания электросварщиков и газосварщиков для допущения их к ответственным сварочным работам

Предварительные условия и допущения, принятые при расчете направляющих

Пределы допущений о непрерывност

Пределы допущений о непрерывности

Примеры расчета на прочность с допущением трещины

Принятые допущения и основные определения

Принятые допущения о свойствах машин и переходных процессов в них

Прочность — Гипотезы Допущения основные

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Раздел первый РАСТЯЖЕНИЕ И СЖАТИЕ Основные положения Основные гипотезы и допущения

Сопротивление материалов Основные положения сопротивления материалов Задачи сопротивления материалов. Понятия о деформациях, упругости и прочности. Основные допущения, принятые в сопротивлении материалов

Столкновений число (допущение

Столкновений число (допущение используемое при вычислении Stosszalilanzatz)

УСЛОВИЯ ПРИМЕНЕНИЯ И ПОГРЕШНОСТИ УПРОЩЕНИЙ И ДОПУЩЕНИЙ ПРИ ОПРЕДЕЛЕНИИ НЕСТАЦИОНАРНЫХ ТЕМПЕРАТУРНЫХ ПОЛЕЙ ПЛОСКИХ ТЕЛ

Упрощающие допущения для тонких н пологих оболочек (оболочки класса

Циклы термодинамические — Допущения



© 2025 Mash-xxl.info Реклама на сайте