Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Допущения о свойствах материала элементов конструкций

Материал однороден, т. е. его свойства не зависят от размеров выделенного из тела объема. В действительности однородных материалов в природе нет. Например, структура металлов состоит из множества хаотически расположенных микроскопически мелких кристаллов (зерен). Размеры же рассчитываемых элементов конструкций, как правило, неизмеримо превышают размеры кристаллов, поэтому допущение об однородности материала здесь полностью применимо.  [c.153]


В методиках расчета, разработанных Институтом машиноведения АН СССР, сделан ряд допущений и упрощений, позволяющих выполнить расчет прочности и долговечности в рамках инженерных возможностей — с использованием аналитических зависимостей для кривых малоциклового разрушения, базовых статических и циклических свойств материала и схематизированных режимов эксплуатационного нагружения. Расчет местных напряжений и упруго-пластических деформаций проводится на базе коэффициентов концентрации напряжений и деформаций в упругой области. Эти коэффициенты устанавливаются по теоретическим коэффициентам для заданных уровней номинальных нагружений с учетом сопротивления материалов неупругим деформациям при статическом и циклическом нагружении. Нестационарность режимов нагружения в инженерных расчетах учитывается по правилу линейного суммирования повреждений. Расчеты выполняются для стадии образования трещины в наиболее нагруженных зонах рассматриваемых элементов конструкций.  [c.371]

При выборе материалов конструктор должен иметь в руках выбор так называемых расчетных допущений. Ими являются показатели свойств при растяжении, сжатии и сдвиге монослоя или слоистого материала, из которого изготовляется элемент конструкции. Монослои анизотропны, и поэтому конструктор не обнаружит в справочнике единственных значений прочности, модуля упругости, коэффициента Пуассона и др., как в случае металлов. Вместо этого используются серии графиков, которые иллюстрируют изменение прочности и модуля в зависимости от ориентации волокна. Теоретические значения этих показателей могут быть получены на основании законов микромеханики, однако практически реализуемые должны определяться экспериментально. Эти экспериментальные данные и последующий анализ обеспечивают необхо-  [c.58]

Возникновение пластичного излома обычно означает, что материал до разрушения выдержал нагрузку, соизмеримую с пределом прочности, т. е. соответствующую расчетной нагрузке, и поэтому преждевременного разрушения, столь опасного при хрупких разрушениях, не произошло. Отсюда следует, что причинами возникновения пластичных изломов в эксплуатации обычно являются значительные перегрузки, возникающие либо вследствие резкого нарушения нормальных условий работы конструкции (например, вторичные разрушения при перегрузках после предварительного выхода из строя отдельных элементов), либо вследствие ошибки, допущенной при расчете на прочность, неполного учета реальных условий эксплуатации или резко пониженных свойств материала (при сохранении высокой пластичности).  [c.35]


Возможность хрупкого разрушения зависит от многих факторов. Рассмотрим, например, уравнения (И) и (21), с помощью которых можно вычислить соответственно критическую длину трещины и число циклов до разрушения. Для решения этих уравнений необходимо знать свойства материала, характер нагружения в процессе эксплуатации, вероятные размеры исходной трещины и вид зависимости K=f(a) для данного случая. Для сложной конструкции все эти факторы, очевидно, установить не удается. Поэтому для обеспечения безопасности и надежности конструкции необходимо разработать план ограничения этой неопределенности. Он состоит из следующих элементов 1) определение расчетных критериев и допущений, используемых при анализе 2) расчет конструкции с учетом допустимого повреждения 3) осуществление мероприятий по обеспечению выполнения требований расчета.  [c.25]

Свойства материала, технология изготовления, конструкция соединения учитываются при получении кривых усталости. Этот подход при некоторых допущениях может быть применен для анализа усталости продольного стыка крыла, напруженного нормальным (от действия изгибающего момента) и касательными напряжениями. При наличии кривой усталости такого шва при действии только нормального напряжения и кривой усталости при действии одних лишь касательных напряжений т XI усталость при нахрузках, приводящих к одновременному действию нормальных и касательных напряжений, можно оценить так же, как и для поперечного стыка, т.е. приведением фактического напряженного состояния к напряженному состоянию полосы с ненагруженным крепежным элементом  [c.415]

Методы механики разрушения разрабатываются с учетом двух основных допущений. Во-первых, обычно полагают, что рассматривав мые материалы обладают совершенно однородными свойствами такими, как модуль упругости Е, предел текучести или 2 менное сопротивление разрыву о , ударная вязкость а , относитель ное сужение j/, удлинение 8, и другими стандартными характеристи ками, определяемыми экспериментально на лабораторных образцах Во-вторых, допускают (и это вполне соответствует реальным уело виям), что во всех деталях и элементах конструкций в исходном состоянии уже имеются какие-то начальные несплошности или трещиноподобные дефекты, которые могут расти и развиваться в процессе эксплуатации. Таким образом, процесс разрушения в этом случае принимается многостадийным и в первом приближении определяется стадиями зарождения и распространения трещины. Термин "зарождение трещины" применяют для обозначения процесса возникновения первоначальной трещины в микроструктуре материала, в частности, из имеющихся там дефектов или каких-либо концентраторов напряжений.  [c.30]

Из-за сложности задачи расчета элементов конструкций в сопротивлении материалов принимаются некоторые упрощающие допущения относительно свойств материала, нагрузок и характера взаимодействия детали и нагрузок.  [c.7]

Иногда, если ребра, подкрепляющие О., достаточно надежны, сознательно допускают работе О. при нагрузках, превышающих критическую. Панели, потерявшие устойчивость, продолжают работать пак силовой элемент конструкции однако при этом су]че-ственно повышается ответственность набора, к-])ый должен быть рассчитан с учетом особенностей поведения О. в закритич. стадии. Расчет деформации О. в этой стадии, так же как и хлопок, принадлежат к числу геометрически нелинейных задач теории О. (т. е. таких задач, нелинейность которых обусловливается геометрич. фактором — сравнимостью перемещений О. с толщиной) с иным типом нелинейности (физической) приходится сталкиваться при расчете О., работающих при напряжениях выше предела пропорциональности или предела текучести. В этом слз чае нелинейность обусловливается свойствами материала О. Соответствующие уравнения выводятся с использованием теории пластичности [71 (при тех же основных допущениях, какие были указаны выше).  [c.466]

Раарушенве, обусловленное возникновением пластического течения. Все. приведенные результаты основывались на допущении того, что материал сохраняет свой упругие свойства. Если же после прохождения пиковой точки на кривых (рис. 7.8) возникает пластическое течение, что, разумеется, вполне возможно, то способность оболочка оказывать сопротивление нагрузке будет падать даже быстрее, чем это показано на рис. 7.8, и разрушение будет носить еще бояее резкий характер. Упругость испытательной машины или ебседних элементов реальной конструкции, куда входит сжатая оболочка, также способствует усилению внезапности наступления разрушения, так как при зтом освобождается накопленная энергия. Но цилиндри.ческая оболочка должна нагружаться плавно и постепенно вплоть до пиковой точки с тем, чтобы не проявлялись динамические эффекты, а то, что будет происходить после этого, обычно не представляет особого интереса для практики.  [c.508]


В отличие от первого резинового слоя, второй слой — каркас, состоящий из ряда концентрически или спирально расположенных прокладок, элементы которых имеют некоторую возможность сдвига, обладает специфическими свойствами. Резино-текстильный кар-кгс, составленный из материалов, модули упругости которых различаются примерно на 1—3 порядка, и позволяет рассматривать его (как отмечалось в гл. 2) как особую слойноструктурную конструкцию, представляющую собой анизотропный материал. Не обращаясь к специальному исследованию такого материала, рассмотрим каркас напорного рукава как конструктивную совокупность концентрически расположенных текстильно-арматурных слоев, соединенных резиновой массой. При этом учтем, что исходные свойства текстиля видоизменяются в технологических процессах резинового производства (прорезинивание ткани, трощение нитей, обращение их в оплетки, склеивание, вулканизация и пр.). Сделав это допущение, исследуем и оценим все факторы, так или иначе сказывающиеся на прочностных свойствах однородного каркаса.  [c.139]


Смотреть страницы где упоминается термин Допущения о свойствах материала элементов конструкций : [c.16]   
Смотреть главы в:

Сопротивление материалов Изд3  -> Допущения о свойствах материала элементов конструкций



ПОИСК



Допущения

Свойства материалов

Элемент конструкции

Элементы Материалы

Элементы Свойства



© 2025 Mash-xxl.info Реклама на сайте