Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние коррозионной среды на развитие усталостных трещин

I.2.4. ВЛИЯНИЕ КОРРОЗИОННОЙ СРЕДЫ НА РАЗВИТИЕ УСТАЛОСТНЫХ ТРЕЩИН  [c.198]

Сопротивление таких кривых, полученных при испытании металла на воздухе и в коррозионной среде (например, воде, паре), дает информацию по влиянию Коррозионной среды на предел выносливости. Однако не всегда такое сопротивление может быть успешно использовано для оценки стойкости металла к коррозионной усталости. Это объясняется тем, что для некоторых металлов определяющую роль в усталостном разрушении играет скорость распределения трещины, а не возникновение первоначального дефекта, из которого она начинает свой рост. Целесообразно в этой связи исследовать развитие усталостной трещины на образцах с предварительно нанесенным надрезом, а данные о влиянии коррозионной усталости представлять в виде зависимостей роста усталостной трещины от интенсивности напряжений.  [c.184]


Как указано выше, процесс разрушения металлов при циклическом нагружении можно условно разделить на три периода зарождение усталостной трещины, ее до-критический рост и долом. Поскольку первые два периода — определяющие, то именно на их изучении было сосредоточено основное внимание исследователей, причем раскрытию механизма и закономерностей роста усталостной трещины уделялось больше внимания, чем изучению начальной стадии разрушения, хотя она во многих случаях может определять долговечность детали. Что же касается влияния поверхностно-активных и коррозионных сред на кинетику усталостного разрушения металлов, то в силу сложности протекающих процессов этот вопрос не получил еще достаточного развития, а имеющиеся в литературе данные зачастую противоречивы.  [c.76]

В табл. 15 приведены данные о влиянии коррозионных сред на число циклов до зарождения усталостной трещины и скорости ее развития при  [c.86]

К разрушениям второго типа, которые могут происходить также при различных схемах нагружения, следует отнести разрушения, для которых критические параметры существенно зависят от времени нагружения в том или ином виде. Типичным примером является разрушение, получившее в литературе название разрушение при взаимодействии ползучести и усталости [240, 341] при циклическом нагружении в определенном температурном интервале долговечность при одной и той же амплитуде деформации зависит от скорости деформирования, значительно уменьшаясь при малых эффективных скоростях деформирования, в частности при циклировании с выдержками. На стадии развития усталостного повреждения также известны многочисленные экспериментальные данные о влиянии частоты нагружения в определенных условиях, особенно в коррозионной среде, на скорость роста усталостных трещин [199, 240, 310,  [c.150]

Как видно из рис. 38, влияние асимметрии цикла на его предельную амплитуду для испытания на воздухе независимо от уровня среднего напряжения оста-ется постоянным, а в воде зависит от уровня среднего напряжения, причем с его увеличением (до 16 кгс/мм ) увеличивается. Это, по-видимому, объясняется тем, что при испытании на воздухе образцы работают с трещиной 10—30% времени от общей долговечности, а в коррозионной среде — до 90%. Развитие усталостных трещин под действием растягивающего среднего напряжения ускоряется. Поэтому пред-  [c.71]


Поскольку, как уже отмечалось, развитие усталостных трещин и выносливость материалов существенно зависят от условий испытаний, для оценки несущей способности реальных изделий при испытаниях стараются максимально отразить эксплуатационные факторы. Связь пороговых коэффициентов интенсивности напряжений и пределов выносливости исследовали на примере материалов, применяемых для изготовления компрессорных лопаток газотурбинных двигателей (ГТД). Компрессорные лопатки в эксплуатации подвержены воздействию высокочастотных вибраций при сравнительно низких амплитудах напряжений и ввиду отсутствия временных эффектов (например, ползучести) представляют собой идеальный объект для применения линейной механики разрушения. Присутствие коррозионной среды — морской воды при работе компрессорных лопаток судовых ГТД является основанием для коррозионно-усталостных эффектов. При оценке эксплуатационной пригодности материалов для турбинных лопаток необходимо рассмотреть влияние высоких температур. Учитывая, что лопатки работают в поле центробежных сил, порождающих асимметрию нагружения., необходимо исследовать его влияние.  [c.89]

Шероховатость, глубина и степень наклепа, остаточные напряжения, химический и фазово-структурный состав ПС оказывают существенное влияние на коррозионно-усталостную прочность сталей и сплавов. Присутствие коррозионной среды интенсифицирует зарождение и развитие усталостных трещин, значительно снижает усталостную прочность деталей.  [c.99]

В поверхностно-упрочненном материале при усталостном разрушении на воздухе часто наблюдается образование подповерхностных очагов. При испытании упрочненных материалов в коррозионной среде в общем случае не наблюдается снижения долговечности по отношению к сухой усталости. Объясняют это тем, что в начальный момент разрушения, когда фактор среды сказывается наиболее сильно, параллельно идут два процесса зарождение и рост трещин при чисто усталостном механизме с образованием подповерхностного очага и зарождение на поверхности трещин коррозионного происхождения [76]. Совместное участие среды и механического фактора наблюдается лишь после соединения этих трещин, т. е. в такой стадии повреждения материала, когда основное влияние на развитие трещины оказывает механический фактор.  [c.131]

Описанные уравнения роста трещин многоцикловой усталости используют также и для оценки долговечности конструкционных элементов, работающих на циклические нагрузки в условиях воздействия агрессивных сред. При этом физико-химические свойства среды, а также условия нагружения, прежде всего такие, как частота и температура металла и среды, отражаются определенным образом на коэффициентах Вит. Имеющиеся в обширной литературе по коррозионной усталости экспериментальные данные о характере этого влияния достаточно разноречивы, причем в любом случае большую роль играют индивидуальные свойства металла и агрессивной среды. По некоторым данным рост трещин под воздействием агрессивной среды ускоряется, по иным данным, наоборот, замедляется, что объясняют образованием защитного слоя из продуктов коррозии, усиленным теплоотводом от зоны местных напряжений перед фронтом трещины в жидких средах и т. п. Однако в целом следует считать, что по мере углубления и расширения коррозионно-усталостных трещин влияние агрессивной среды (каким бы оно не было) должно ослабевать в сторону преобладания чисто механического фактора. Достаточно развитые трещины должны распространяться при прочих равных условиях в агрессивной среде примерно с той же скоростью, что и на воздухе. Это вытекает из тех очевидных соображений, что деструкция материала в зоне местных напряжений перед устьем трещины определяется в первую очередь местными пластическими деформациями, которые зависят в свою очередь от циклического напряженного состояния всего конструкционного элемента, а не от свойств агрессивной среды. Однако среда играет  [c.135]


Коррозионно-усталостные разрушения детали наблюдаются при одновременном действии коррозии и знакопеременной нагрузки. Например, такие детали несущих кузовов, как стойки, дуги каркаса, несущие элементы облицовки и др. при движении автомобиля подвергаются знакопеременным нагрузкам и в условиях коррозионной среды подвергаются коррозионной усталости. Под влиянием коррозии на поверхности детали может возникнуть микроскопическое точечное коррозионное разрушение металла (питтинг), которое может стать концентратором напряжений и причиной зарождения микротрещины. Развитие трещины усталости под воздействием коррозионной среды протекает более интенсивно по сравнению с обычным усталостным разрушением.  [c.139]

Коррозионная среда. В настоящее время накоплен большой экспериментальный материал по влиянию различных коррозионных сред на развитие усталостных трещин в металлических материалах. Кислород воздуха при высокотемпературных испытаниях становится активным и интенсивно окисляет материал в вершине трещины. Высокопрочные стали подвержены водородному охрупчиванию. Электролитические растворы вызывают анодное растворение материала. Все эти процессы отрицательно сказываются на характеристиках трещиностойкости при циклическом нагружении. При этом общая тенденция такова, что снижение частоты нагружения увеличивает отрицательное воздействие коррозионной среды [118, 221], хотя иногда происходят аномалии. При очень низких частотах нагружения для высокопрочной стали отмечали отсутствие повышения скорости роста трещины из-за пассивации [118]. В каждом конкретном случаетрудно количественно предугадать, каким будет влияние коррозионной среды. Поэтому при планировании экспериментов стараются максимально отразить специфику эксплуатации — уровень нагрузок, частоту, температуру, аэрацию, концентрацию активных веществ и т. п.  [c.176]

В основе механизма усталостного разрушения металлов, в какой бы среде оно ни происходило, лежит образование и развитие в процессе циклического нагружения микротрещин усталости. Факторы, способствующие процессу образования микротрещин усталости и облегчающие их дальнейшее развитие, будут тем самым снижать усталостную прочность металлов и, наоборот, факторы, затрудняющие образование этих трещин, замедляющие их развитие, будут способствовать возрастанию усталостной прочности. Влияние адсорбционно- и коррозионно-активных сред на усталостную прочность металлов зависит от того, в какой мере обеспечено возникновение пластических сдвигов в отдельных, наиболее нагру/кенных или наименее прочных зернах, и развитие на этой основе трещин усталости в поверхностном слое образца. Здесь важно подчеркнуть, что влияние коррозионной среды на усталостную прочность имеет место лшшь в том случае, когда коррозия развивается на внутренних поверхностях раскрывающихся микротрещин усталости. Справедливость этого утверждения следует из тех, хорошо известных фактов, что анодная поляризация циклически нагруженных образцов, увеличивая во много раз общую коррозию (с внешней поверхности металла), не снижает усталостной прочности известно также, что сжимающие напряжения, созданные в поверхностном слое образца обкаткой его роликами или обдувкой дробью, увеличивая общую коррозию, тем не менее повышают усталостную прочность металла в коррозионной среде.  [c.162]

В основе механизма усталостного разрушения металлов, в какой бы среде оно не происходило, лежит образование и развитие в процессе циклического нагружения микротрещии усталости. Факторы, способствующие процессу образования микротрещин усталости и облегчающие их дальнейшее развитие, будут тем самым снижать усталостную прочность металлов, и, наоборот, факторы, затрудняющие образование этих трещин, замедляющие их развитие, будут способствовать возрастанию усталостной прочности. Влияние адсорбционно- и коррозионно-активных сред на усталостную прочность металлов зависит оттого, в какой мере обеспечено возникновение пластических сдвигов в отдельных, наиболее нагруженных или наименее прочных зернах, и развитие на этой основе трещин усталости в поверхностном слое образца. Здесь важно подчеркнуть, что влияние коррозионной среды на усталостную ироч-  [c.127]

Выполненный обзор литературы позволяет сделать вывод, что для описания влияния коррозионной среды можно использовать подходы, основанные на применении линейной механики разрушения. На наш взгляд, для проведения расчетных исследований кинетики усталостной трещины в коррозионной среде наиболее приемлем метод, изложенный в работе [168], с помощью которого можно рассчитать скорость развития трещин в коррозионной среде при различной частоте нагружения на основании данных о скорости их развития на воздухе. В случае, если КИН при соответствующей длине трещины в элементе конструкции будет больше, чем Ks , количество циклов, необходимое для роста трещины при этом условии, можно считать нулевым. Такое допущение дает консервативную оценку долговечности элемента конструкции, что в инженерной практике вполне допустимо.  [c.200]

В направлении развития трещины на максимальную глубину формирование усталостных бороздок было отмечено, как указано выше, начиная с длины около 12 мм (рис. 12.7). Первая измеренная величина шага составила около 7 10" м (0,07 мкм). Указанная величина больше шага бороздок, который характеризует переход ко второй стадии роста трещины для алюминиевых сплавов в соответствии с единой кинетической кривой. Этот факт может быть объяснен влиянием коррозионной среды, что вызывает более существенное протекание процессов скольжения при разрушении материала, и переходом к ротационным модам деформации и разрушения при больших размерах зоны пластической деформации. На этот факт указывают результаты исследования сплава АВТ-1 в 3 % р-ре Na l в воде (см. главу 7). Переход к формированию усталостных бороздок имел место начиная с шага около 10" м, т. е. при еще большей его величине.  [c.642]


Установлено, что скорость развития усталостных трещин на прямолинейном участке диаграммы 1ц daldN — lg АК зависит для исследованных материалов от частоты, асимметрии цикла, температуры, размеров образцов, термической обработки материала, воздействия коррозионной среды [32—38] и других факторов, причем в ряде случаев это влияние не однозначное. Некоторые результаты этих исследований, по данным работы [35], приведены на рис. 3.  [c.10]

А1 6 HjO = 2 А1(0Н)з -н 3 Нг. Скорость развития усталостной трещины некоторых деформированных алюминиевых сплавов в среднеамплитудной области АК увеличивается под влиянием среды в следующем порядке сухой воздух, влажный воздух, вода, соленая вода. В 3,5 %-ном растворе Na I скорость развития трещины примерно в 4—5 раз выше, чем в сухом воздухе. Необходимо отметить, что указанные выше коррозионно-активные среды не оказывают влияния на пороговое значение  [c.107]

В монографии изложен комплекс вопросов, связанных с зарождением и развитием усталостных трещин и влиянием на эти процессы таких факторов, как высокие и низкие температуры, частота, осимметрия и нестационарность нагружения, размеры образцов, состояние поверхностного слоя, присутствие коррозионной среды. Сформулированы критерии зарождения усталостных трещин, условия их распространения и перехода от усталостного к хрупкому разрушению. Обоснована взаимосвязь пределов выносливости и критериев механики разрушения. Рассмотрены примеры использования полученных результатов при решении практических задач.  [c.2]

С использованием оригинальных экспериментальных данных, полученных на конструкционных сталях различного назначения, никелевых, титановых и алюмини ввых сплавах, анализируется влияние на скорость развития усталостных трещин размеров образцов, концентрации напряжений, температуры, частоты и режима нагружения, коррозионной среды и других факторов. Наряду с силовыми рассматриваются де-фзрмационные подходы, позволяющие описать кинетические диаграммы усталостного разрушения.  [c.5]

Для большинства сварных конструкций важным фактором, оказывающим влияние на цикгшческую коррозионную трещиностойкость, является коэффициент асимметрии цикла К В водных средах скорость роста усталостных трещин в широком диапазоне ДKJ существенно увеличивается при высоких значениях К (рис. 13.3.5) в особенности для конструкций из металлов, склонных к коррозионному растрескиванию, т.к. в этом случае развитие разрушения возможно и гфи Л = 1, т.е. при статическом нагружении.  [c.489]

Скорость развития усталостных трещин зависит от частоты нагружения она, как правило, увеличивается с понижением частоты нагружения. Особенно существенно это влияние при наличии коррозионных сред и при высоких температурах. На рис. 5,21 [866] приведены данные, характеризую-щие влияние частоты нагружения на скорость развития трещин в различных конструкционных сталях при цикле нагр5жения, близком к отнулевому.  [c.339]

В работе С. И. Кишкиной и Э. М. Радецкой [76, 77] показано, что коррозионная среда наиболее сильное влияние оказывает на зарождение трещины. Это объясняется тем, что при зарождении трещины обеспечивается свободный доступ среды к ее устью, а при дальнейшем развитии продукты коррозии, накапливающиеся в ее полости, мешают доступу среды. Несмотря на некоторое противоречие во мнениях о влиянии среды на зарождение и развитие разрушения, большинство исследователей [76, 79] приходят к выводу, что при работе в коррозионных средах увеличивается скорость распространения усталостного разрушения.  [c.129]

Было показано, что сопротивление усталости образцов в воздухе при чистом изгибе выше, чем при растяжении — сжатии. Предел выносливости при изгибе составил а =495 МПа, в то время как при растяжении — сжатии о 1р (. =410 МПа. При воздействии 3 %-ного раствора Na I эта закономерность изменяется в противоположном направлении. Условный предел выносливости при изгибе и растяжении — сжатии соответственно составил 200 и 340 МПа. Такой характер влияния вида нагружения на сопротивление коррозионно-усталостному разрушению связан с тем, что среда сильно разупрочняет приповерхностный слой металла образца, который несет основную нагрузку при циклическом изгибе. При циклическом же растяжений — сжатии значение напряжений по сечению образца выравнивается и роль приповерхностного слоя значительно меньше. На основании обобщения имеющихся данных можно сделать заключение, что основными напряжениями, способствующими зарождению и особенно развитию коррозионно-усталостных трещин, являются Нормальные напряжения.  [c.115]

Влияние на возникновение и распространение термоусталостных трещин оказывает рабочая среда (ее окислительное и температурное воздействие). По результатам исследований, выполненных в ЦНИИТмаше на сталях различных классов (22К, 16ГНМ, 15Х1М1Ф, 12Х18Н10Т) в широком диапазоне температур в окислительной водной среде и расплаве К — На, было установлено, что окислительная среда всегда приводит к более раннему появлению термоусталостных трещин при прочих равных условиях. Начало развития трещин у всех исследованных материалов имеет типично усталостный характер, т. е. возникает тонкая транскристаллитная трещина. В окислительной среде трещина со временем расширяется и заполняется продуктами коррозии. Этот процесс наиболее активно протекает в стали 22к как наименее коррозионно-стойкой. С увеличением температуры процесс растрескивания становится похожим на питтинговую коррозию (при температуре 550—600 °С для стали 22к). Во всех случаях испытаний в расплаве К—На в этом диапазоне температур также возникали тонкие усталостные трещины.  [c.7]


Смотреть страницы где упоминается термин Влияние коррозионной среды на развитие усталостных трещин : [c.90]    [c.89]    [c.146]    [c.49]    [c.120]    [c.72]    [c.119]    [c.282]   
Смотреть главы в:

Физико-механическое моделирование процессов разрушения  -> Влияние коррозионной среды на развитие усталостных трещин



ПОИСК



Влияние pH среды

Влияние коррозионной среды

Влияние трещин

Коррозионная pH среды

Коррозионные трещины

Развитие усталостных трещин

Трещина развитие

Трещина усталостная

Трещины влияние среды

Трещины усталостные — Влияние

Усталостная



© 2025 Mash-xxl.info Реклама на сайте