Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел хрупкости

Температурный предел хрупкости резни для ремней, предназначенных для районов с холодным и очень холодным климатом, должен быть не выше минус 60 °С.  [c.726]

Температурный предел хрупкости К °С 7912-74  [c.76]

Имея достаточно высокий предел пластической проч-, ности и незначительный предел хрупкости, а также высокие значения теплостойкости, стойкости против адгезионного и абразивного износа, твердые сплавы позволяют вести обработку сталей, чугунов, жаропрочных сплавов и других материалов со скоростями, в несколько раз превышающими скорости обработки инструментами из быстрорежущих сталей, и тем самым обеспечивают значительное повышение производительности обработки.  [c.57]


Температурный предел хрупкости, °С, не выше  [c.348]

Условная прочность, МПа, не менее Относительное удлинение, %, не менее Твердость, единицы Шора Температурный предел хрупкости, °С, не выше  [c.366]

Относительное остаточное удлинение после разрыва, %, не более 12,0 Прочность связи при отслаивании от анодированного алюминиевого сплава Д-16 (ГОСТ 21631), кН/м, не менее 1,66 Температурный предел хрупкости, °С, не выше —33  [c.379]

С увеличением плотности тока в исследуемых пределах хрупкость уменьшается, что, по-видимому, связано с уменьшением напряженности осадка в условиях проведения опыта.  [c.30]

Согласно схеме Иоффе, критическая температура хрупкости определяется точкой пересечения двух кривых критического напряжения хрупкого разрушения акр, практически не зависимого от температуры, и температурно-зависимой характеристики — предела текучести От- Из рис. 2.5, а видно, что при Т < 7"кр металл разрушится хрупко, а при Т > Гкр перед разрушением он будет пластически деформироваться.  [c.57]

Ва, ы электродвигателей изготовляют из сталей 45, 40Х, 40Г и др. Эги стали обычно подвергают закалке в масле и высокому отпуску (550. .. 650 °С) с получением структуры сорбита. Сталь должна иметь высокую прочность, пластичность, высокий предел выносливости, малую чувствительность к отпускной хрупкости, хорошую прокаливаемость.  [c.274]

Введение в хромистую сталь 51 (хромокремнистые стали)существенно повышает прочность, однако снижает вязкость. При сравнительно невысокой прока-ливаемости и склонности к отпускной хрупкости в сочетании с высокой прочностью и высоким пределом упругости хромокремнистые стали применяют для рессор и пружин.  [c.183]

Впервые в практике КРН было обнаружено в клепаных паровых котлах. Напряжения на заклепках обычно превышают предел упругости, и в котельную воду для уменьшения коррозии добавляют щелочь. В щелях между заклепками и листовым металлом котла в процессе кипения концентрация котельной воды достигает уровня, достаточного, чтобы вызвать КРН, нередко сопровождающееся взрывом котла. Поскольку было обнаружено, что одним из коррозионных факторов является щелочь, эти аварии называли щелочной хрупкостью. С распространением сварных котлов и с улучшением обработки котельной воды КРН котлов встречается не так часто, однако не исчезло полностью, так как напряжения могут возникать и в сварных швах котлов, и в емкостях для хранения сильных концентрированных щелочей.  [c.133]

Хрупкое разрушение не сопровождается заметной пластической макродеформацией и происходит при действии средних напряжений, не превышающих предела текучести. Траектория разрушения близка к прямолинейной, излом нормален к поверхности и имеет кристаллический характер (рис. 13.38, в). Хрупкое разрушение, как правило, внутрикристаллическое. Разрушение происходит под действием нормальных напряжений и распространяется вдоль наименее упакованной кристаллографической плоскости, называемой плоскостью скола (отрыва). При некоторых условиях хрупкое разрушение бывает межкристаллитным (например, при водородной хрупкости). Хрупкое разрушение.  [c.544]


С понижением температуры элементы конструкции из пластичных материалов могут разрушаться хрупким образом. При понижении температуры предел текучести сГт и предел прочности Сц возрастают, но предел текучести возрастает быстрее и при очень низких температурах они практически совпадают. Удлинение при разрыве с понижением температуры уменьшается и при некоторой температуре происходит переход от вязкого разрушения к хрупкому. При динамическом деформировании предел текучести возрастает быстрее с понижением температуры и температура перехода от вязкого разрушения к хрупкому повышается. Явление хрупкости стали при низких температурах получило название хладноломкости.  [c.71]

Основные экспериментальные данные могут быть суммированы следующим образом [60, 61]. Предел прочности действительно очень высок и, например, у аморфных сплавов на основе железа он больше, чем у наиболее прочных сталей. Деформация носит характер негомогенного сдвига при низких температурах и гомогенного вблизи температуры стеклования. Несколько неожиданным обстоятельством является образование при деформации своеобразных очагов локализованного сдвига, ответственных за протекание процесса деформации. Относительное удлинение при растяжении при низких температурах весьма мало (примерно 0,1%), и аморфные материалы отличаются высокой хрупкостью. В то же время они могут быть подвергнуты сильному изгибу или сжатию.  [c.288]

Наложение ультразвука в процессе кристаллизации сплава в изложнице способствует росту числа зародышей кристаллизации и измельчению кристаллитов слитка, уменьшает степень дендритной ликвации и в ряде случаев повышает деформируемость металла. В частности, применение ультразвука при обработке сталей У9 и У10 позволяет уменьшить размеры зерна до № 5—7, в результате чего предел прочности их возрастает на 75% при одновременном повышении характеристик пластичности на 30—60%. Большой эффект дает ультразвук на сплавах железа с хромом, кремнием и алюминием, особенно склонными к росту зерна. Обработка ультразвуком устраняет столбчатую структуру слитка, что также сопровождается увеличением предела прочности более чем в 1,5 раза, а относительного сужения и удлинения — в 4—13 раз. При этом понижается критический интервал хрупкости. Однако применение ультразвука в большой металлургии затруднено, так как требует больших мощностей (до 1,5— 2,5 кВт/кг).  [c.503]

Запасы по критической температуре хрупкости принимают в пределах от 20 до 40°. Большие из указанных запасов относятся к элементам сварных конструкций сложной геометрической формы, подвергающихся в эксплуатации действию статических, циклических и динамических нагрузок. Повышенные запасы критической температуры выбирают также в тех случаях, когда минимальная температура элементов в эксплуатации может оказаться ниже минимальной расчетной (это, в частности, относится к температуре элементов, зависящей от климатических условий).  [c.67]

Обычно к определению пластичности как свойства металлов добавляются существенные ограничения в известных условиях и пределах или лишь при определенных температурах, кроме зон хрупкости, провалов пластичности, красноломкости, горячеломкости, хладноломкости.  [c.12]

Многие авторы считают, что хладноломкость молибдена — характерное его свойство, а основная причина хладноломкости — резкое повышение предела текучести при низких температурах. Поэтому трудно рассчитывать на устранение хладноломкости молибдена или снижение температуры перехода к хрупкости при обычных металлургических процессах. В качестве довода в пользу природной хрупкости молибдена приводят транскристаллитный характер разрушения, наблюдаемый при некоторых испытаниях. Однако фрактографическими исследованиями установлено, что излом почти всегда происходит по границам зерен, да-  [c.125]


Добавки иттрия и лантана, понижая содержание кислорода и улучшая распределение углерода в литом молибдене, уменьшают предел текучести и температуру перехода к хрупкости [1]  [c.133]

Существенным недостатком борьбы с хрупкостью с помощью введения добавок, связывающих вредные примеси, является необходимость ограничения в большинстве случаев интервалов концентраций добавки узкими пределами сотых долей процента и даже менее. Такое требование трудно выполнить в производственных условиях, так как содержание вредной примеси не постоянно. Добавки, как правило, химически очень активны, поэтому в процессе плавки и литья интенсивно окисляются, соединяются с азотом и другими веществами величина потерь добавок зависит от условий плавки, которые не всегда постоянны.  [c.202]

Присутствие Mg даже в сотых долях процента повышает предел прочности, предел текучести, твердость и хрупкость.  [c.59]

Области применения. Сплав предназначается для литья в землю и кокиль при производстве высоконагруженных деталей в тех случаях, когда требуется повышенный предел текучести. В литом состоянии сплав применять не рекомендуется вследствие его высокой хрупкости.  [c.152]

Из восьми благородных металлов четыре (серебро, золото, платина и палладий) обладают хорошей пластичностью, малой твердостью и малой упругостью (табл. 10). Иридий и родий малопластичны и более тверды. Рутений и осмий обладают высокой твердостью, упругостью и хрупкостью. Благородные металлы, осажденные электролизом, имеют очень высокую твердость по Викерсу платина 606—642, палладий 190—435, родий 550—1050. Серебро, золото, платина и палладий имеют очень небольшой предел прочности на растяжение (12—  [c.401]

Линия А на диаграмме Шнадта — это линия начала пластической деформации (линия текучести). Снизу линия текучести ограничена точкой Jo, ордината которой равна пределу хрупкости, т. е. такому значению величины П, при котором и ниже которого мыслимо лишь хрупкое разрушение без предшествующей ему пластической деформации. Предел хрупкости — это константа материала в рассматриваемом состоянии и относящаяся к определенным температуре и скорости деформирования. Отрезок прямой, расположенный вертикально между точкой Jg и пересечением с осью абсцисс, представляет собой линию хрупкого разрушения (от отрыва). Кроме отмеченных выше двух линий, на диаграмме имеется еще две линии —обе линии разрушения. Одна из них, линия i , сверху ограничена уровнем ординаты ГГ = 2, а снизу точкой Nf . Линия соответствует разрушению от среза. Другая линия, JnJVp, является линией разрушения от отрыва, происходящего после предварительной пластической деформации. Обсуждаемая основная диаграмма строится на базе эксперимента по нескольким характерным точкам. Так, например, кроме точек и Л экспериментально может быть найдена точка А она соответствует П = 1, KOTODOe имеет место при одноосном растяжении следовательно, абсциссой точки Ад является предел текучести при простом растяжении. Для кривой Л в системе осей П —может быть составлено уравнение таким является  [c.558]

Температурная зависимость Ова = Т) для многих полимеров имеет сложный характер. С понижением температуры предел вынужденной эластичности резко возрастает, приближаясь к пределу хрупкости. Температура, при которой вынувденная эластичность вырождается, называется температурой хрупкости, или точкой хрупкости Тхр-  [c.101]

Температурный предел хрупкости определяют согласно ГОСТ 7912 — 74. Суть метода — определение самой низкой температуры 9)ф, при которой образец резины (пластина, консольно зажатая в приборе) не разрушается при ударной сосредоточенной нагрузке на край образца. Испытания начинают с более низкой температуры, постепенно ее повьппая. Температура Эхр, определенная данным методом, обычнб превышает допускаемую предельную температуру, при кбто-рой можно эксплуатировать уплотнения.  [c.86]

Изменение относительноного удлинения при старении в воздухе при 100°С за Й4 ч, % Температурный предел хрупкости, °С, не выше  [c.363]

Так, для стали 08X13 такой температурой оказывается 100— 120° С. Соответственно могут быть ограничены и температуры подогрева для других сталей, иапример 12X13, 20X13. Верхний предел сопутствующего подогрева следует ограничивать переходом стали к отпускной хрупкости или синеломкости, т. е. температурой для различных сталей в интервале 200—250 С. При любом виде сопутствующего подогрева чрезвычайно опасны резкие охлаждения ветром или сквозняками, так как при этом весьма вероятно появление трещин.  [c.267]

Применяют различные виды наплавочных материалов, например порошковую смесь карбидов W2 - -W в эвтектической пропорции . Этой смесью заполняют железную трубку. Наплавление проводят с помощью расплавления железной трубки. Наплавленный слой состоит из железа с bkjuoi-ния-ми карбидов вольфрама. При высокой твердости и износостойкостн, превышающей остальные наплавочные материалы, этот наплавочный материал обладает весьма высокой хрупкостью. Предел прочности при изгибе составляет всего лишь 30—50 кгс/мм (при растяжении — близок к нулю).  [c.507]

Понижение температуры практически не изменяет сопротивления отрт.шу 5от (разрушающего напряжения), но повышает сопротивление пластической деформации о.,. (предел текучести). Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разруи1аться хрупко. В указанных условиях сопротивление отрыву достигается при напряжениях меньших, чем предел текучести. Точка / пересечения кривых и а,., соответству-юп ан температуре перехода металла от вязкого разрушения к хрупкому, получила название критической температуры хрупкости или порога хладноломкости (/п. х)- Чем выше скорость деформации, тем больше склонность металла к хрупкому разрушению. Все концентраторы напряжений способствуют хрупкому разрушению. С увеличением остроты и глубины надреза склонность к хрупкому разрушению возрастает. Чем больше размеры изделия, тем больше вероятность хрупкого разрушения (масштабный фактор).  [c.53]


С р е д и е т е м п е р а т у р и ы й (средний) отпуск вьг нолняют при 350—500 °С и применяют главным образом для пружин и рессор, а также для штампов. Такой отпуск обеспечиваеч выс(жпе пределы уп )угости и выносливости и релаксационную стойкость. Структура стали после среднего отпуска — троостит отпуска или троостомартепсит твердость стали HR 40—50. Температуру от пуска надо выбирать таким образом, чтобы не вызвать необратимой отпускной хрупкости.  [c.217]

ТТ[Л1с>тствие 8 ухудшает качество чугуна понижает жидкотеку-честь, увеличивает усадку, вызывает хрупкость и склонность к образованию трещин. Поэтому количество 8 ограничивается пределами 0,08—0,12%. При малом содержании Мп сера оказывает на чугун отбеливающее действие.  [c.73]

Особенностью бетона как конструкционного материала явЛяются хрупкость и резкая анизотропия механических качеств н склонность к хрупкому растрескиванию даже при небольших напряжениях растяжения, йредел прочности на растяжение в 10—20 раз меньше предела прочности на сжатие. ,  [c.193]

Исследования показали, что по химическому составу металл отливки корпуса задвижки соответствовал стали А-352 1СВ по АЗТМ и в зоне разрушения находился в охрупченном состоянии ударная вязкость КСУ 4д при пониженной температуре составляла 12 Дж/см , относительное удлинение 8 — 23,8%. Металл имел ферритно-перлитную структуру с крупными равноосными зернами и включениями карбидов внутри зерен феррита. Охрупчивание металла отливки в зоне разрушения было вызвано наличием усадочных межкристаллитных несплошностей и проявлением водородной хрупкости. По значениям прочности, твердости и относительного сужения металл отвечал требованиям нормативных документов к отливкам, предназначенным для эксплуатации в средах с высоким содержанием сероводорода. Разрушение стенки корпуса задвижки произошло в результате быстрого развития трещин, образовавшихся в металле под воздействием напряжений, превышающих предел текучести, в зоне расположения усадочных несплошностей. Наличие высоких напряжений в металле в момент, предшествовавший разрушению, подтверждалось тем, что в зоне зарождения и нестабильного роста трещин преобладал вязкий характер разрушения. Характер излома корпуса задвижки в зонах зарождения и докритического роста трещины смешанный, а в зоне лавинообразного разрушения — хрупкий с шевронным узором. Охрупчивание металла, вызванное его пониженной ударной вязкостью, способствовало лавинообразному развитию разрушения. На гболее вероятной причиной разрушения задвижки явилось, по-видимому, размораживание ее корпуса.  [c.52]

Получаемый массив экспериментальных данных позволяет аттестовать материалы по сопротивлению разрушению при статическом, циклическом и ударном нагружении с определением предела усталости ст.ь статической (Кю) и циклической (Ki , К, ) трещиностойкости на основе испытаний крупногабаритных образцов линейной механики разрушения с построением (при циклическом нагружении) кинетической диаграммы усталостного разрушения (КДУР), а также показателей сопротивления разрушению при ударном нагружении -критические температуры хрупкости КТХ, ударная вязкость.  [c.234]

По данным многочисленных исследований, степень эвтектично-сти чугуна для изложниц рекомендуется принимать близкой к единице (0,97 - 1,05). Для этого увеличивают содержание углерода, не повышая концентрацию кремния более 2%, так как кремний, растворяясь в феррите, снижает теплопроводность чугуна и повышает его хрупкость. Концентрацию углерода и кремния в чугуне рекомендуется поддерживать соответственно в пределах 3,4 - 4,2 и 1,4 - 2,2%. В чугунах для изложниц массой более 3 т содержание углерода целесообразно поддерживать на верхнем, а кремния - на нижнем пределах.  [c.340]

Явление наклепа часто используется в технике например, для уменьшения провисания проводов, расчетные напряжения в которых превышают nejiBo-начальный предел пропорциональности, их предварительно вытягивают для создания в них наклепа. В тех случаях, когда наклеп нежелателен (так как он повышает хрупкость материала), его можно ус ранить путем отжига детали.  [c.36]

К ним огноскгся предел прочности при растяжении Ор относительное удлинение при разрыве Л/// хрупкость твердость.  [c.17]

В твердых диэлектриках повышенная температура вызывает соответствующие изменения электрических параметров и снижение ряда механических. Кроме того, повышенная температура размягчает большинство твердых диэлектриков и даже может их расплавить. Низкая температура плавления некоторых материалов лимитирует даже область их применения, например у стандартного парафина разных марок температура плавления лежит в пределах 49—54° С. Органические и элементоорганические соединения при воздействии высокой температуры подвергаются термоокислительной деструкции, которая приводит к необратимому изменению их свойств и тепловому старению. К числу тепловых воздействий относится и терм о-удар — резкое изменение температуры. Многие твердые диэлектрики плохо переносят резкие температурные колебания, которые вызывают растрескивание. Очень низкие температуры не орасны с точки зрения непосредственного воздействия на электрические параметры, но ведут к появлению трещин и могут вызывать хрупкость твердой изоляции, которая по условиям использования должна оставаться гибкой. Например, применяемая для многих марок проводов резиновая изоляция в области достаточно низких температур становится хрупкой, ломкой. Жидкие диэлектрики при понижении температуры повышают свою вязкость, а при достаточно низких температурах совсем застывают и теряют текучесть.  [c.108]

Распространено мнение, что хладноломкость является природным свойством о. ц. к. металлов (например, Fe, Сг, Мо, W, вследствие резкого увеличения их предела текучести при понижении температуры [1]) в отличие от меди, никеля, алюминия и других металлов, имеющих г. ц. к. решетку. Действительно, металлы с г. ц. к. решеткой нехлад -поломки. Однако тантал и щелочные металлы с о. ц. к. решеткой также нехладноломки, чистейшее железо пластично до глубокого охлаждения. С повышением чистоты металлов подгруппы хрома порог хрупкости смещается к низким температурам. Хладноломкость цинка и кадмия обусловлена примесями при чистоте 99,999 % хладноломкость отсутствует. Чистые металлы VA подгруппы также нехладноломки. Хладноломкость у них наблюдается лишь при недостаточно высокой чистоте. Растворимость примесей у металлов VIA подгруппы чрезвычайно мала, и достаточно полная очистка их представляет трудную задачу. Кроме того, при хранении в комнатных условиях они могут поглощать газы из атмосферного воздуха и охрупчиваться.  [c.23]

При весьма высокой TBepAo TVi и 1 (гюсостопкости, превышающих аналогичные свойства большинства из известных в технике материалов, литые карбиды вольфрама обладают значительной хрупкостью. Так, предел прочности при изгибе составляет только 30—50 кг/мм-.  [c.563]


Смотреть страницы где упоминается термин Предел хрупкости : [c.462]    [c.223]    [c.404]    [c.112]    [c.243]    [c.267]    [c.283]    [c.14]    [c.82]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.558 ]



ПОИСК



Н набухание в жидких средах предел хрупкости температурный

Хрупкость



© 2025 Mash-xxl.info Реклама на сайте