Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы электродные

Протекторная защита состоит в том, что к защищаемой конструкции присоединяют металл или сплав, электродный потенциал которого электроотрицательнее потенциала защищаемой конст- рукции в данной коррозионной среде. В морской воде или грунте материалом протекторов является чистый цинк или сплавы цинка с алюминием. Иногда применяют также сплавы на основе магния. В таком гальваническом макроэлементе протектор служит анодом и в процессе защиты постепенно электрохимически растворяется. Коррозия защищаемой конструкции — катода полностью прекращается или значительно уменьшается. Несмотря на увеличение общего тока элемента, локальный коррозионный ток защищаемой конструкции (ток микропар) после присоединения к ней протектора значительно уменьшается. Эффективность катодной защиты характеризуют величиной защитного эффекта  [c.83]


В табл. 92 приведены химические составы выпускаемых в СССР литых наплавочных сплавов и зернообразного сплава сталинит, а в табл. 93 — сплавов электродного типа.  [c.193]

Знание химических знаков элементов позволяет разбираться в химических составах веществ, с которыми приходится иметь дело в сварочной технике (металлы и их сплавы, электродные покрытия, флюсы и т. п.).  [c.43]

В процессе работы большое количество деталей механизмов, машин и инструмента выходят из строя вследствие истирания, эрозии, коррозии и кавитации. Ремонт изношенных и увеличение срока службы новых деталей могут быть достигнуты путем придания их поверхности особых физико-химических свойств за счет наплавки различных сплавов. Различают следующие основные группы материалов для наплавки электродные, литые твердые сплавы и порошкообразные смеси.  [c.88]

Электродные твердые сплавы широко применяются в настоящее время. При их использовании легирование металла наплавки может производиться за счет стержня или,наполнителя, за счет толстого покрытия или комбинированным способом — за счет стержня и электродного покрытия.  [c.89]

Изучить технологию и технику наплавки порошкообразных, литых и электродных твердых сплавов на пластины.  [c.89]

Опыт 1, Изучить особенности и свойства металла, наплавленного электродными твердыми сплавами.  [c.90]

Рис. 344. Принципиальная схема микро-электрохимического метода измерения электродных потенциалов структурных составляющих сплавов Рис. 344. <a href="/info/4763">Принципиальная схема</a> микро-<a href="/info/497939">электрохимического метода</a> измерения электродных потенциалов <a href="/info/335019">структурных составляющих</a> сплавов
Применение электрохимической защиты возможно приложением тока извне или путем присоединения к конструкции, подверженной коррозионному растрескиванию, другого металла с более отрицательным электродным потенциалом — протектора (см. гл. XIX). Эффективное действие этого метода защиты в отношении предотвращения или уменьшения коррозионного растрескивания зависит от природы металлов и сплавов, характера агрессивной среды, применяемой плотности тока и других фак-  [c.116]


Тантал — конструкционный металл с наиболее высокой плотностью, равной 16,6 Мг/м . Из всех известных металлов и сплавов тантал обладает наиболее высокой коррозионной стойкостью, несмотря на электроотрицательный нормальный электродный потенциал. Коррозионная стойкость тантала объясняется наличием на его поверхности стойкой окисной пленки Та Ов, обладающей хорошим сцеплением, непроницаемостью и защищающей металл от действия большинства агрессивных сред и при высоких температурах.  [c.293]

Высокой химической активностью при сварке отличаются и другие цветные металлы алюминий, магний, медь, никель и сплавы на их основе. Качество их защиты обеспечивается инертными газами, а также специальными электродными покрытиями и флюсами.  [c.40]

По современным представлениям, скорость обеих электродных реакций определяется переносом зарядов через ионный двойной слой, единый на всей границе амальгама — раствор и не допускающий выделения структур, отвечающих анодным и катодным участкам. В частности, разряд Н+ сопровождается переносом электрона из зоны проводимости сплава, а не от отдельных составляющих его атомов Это не исключает существования участков с частичным или (реже) полным разделением анодного и катодного процессов в случае твердых многофазных материалов. — Примеч. ред.  [c.63]

Для получения сварных соединений высокого качества необходимо правильно подбирать состав сварочного флюса и электродной проволоки для сварки данного металлического сплава, что можно сделать, используя справочники по сварке.  [c.368]

Сварка алюминиевых и магниевых сплавов требует уже аргона повышенной чистоты (марок А или Б), а также тщательной разработки технологии подготовки свариваемых кромок и электродной проволоки из-за опасности появления пористости сварных соединений. Это определяется физико-химическими свойствами металлов.  [c.387]

Коррозия с водородной деполяризацией характерна для металлов. имеющих электродный потенциал отрицательнее, чем водород, и протекает, как правило, в кислых средах. Однако ряд активных металлов. например, магний и его сплавы, корродируют таким же образом в нейтральных и щелочных средах за счет восстановления водорода из молекул воды по реакции  [c.35]

Пассивностью называют состояние относительно высокой коррозионной стойкости металлов, сталей и сплавов в агрессивных средах, возникающее в результате торможения анодной реакции ионизации в определенной области электродных потенциалов.  [c.89]

Анодная защита легированием обеспечивается наличием в составе сплава катодных добавок, имеющих более положительный электродный потенциал по отношению к основному металлу (Си, Ag, Pi, Ра).  [c.68]

Олово широко используют как главную составную часть большинства мягких (низкотемпературных) припоев, а также в электродных сплавах, особенно для германия, с которым оно легко сплавляется. В полупроводниковой технологии олово применяют в качестве носителя донорных элементов - так, оно является почти единственным носителем фосфора.  [c.34]

Исследование кинетики электродных реакций. Один из основных методов изучения механизма процессов электрохимической коррозии металлов и сплавов это построение и анализ поляризационных кривых, пользуясь которыми можно также определить ток коррозии и рассчитать коррозионные потери.  [c.85]

Для чистового, получистового и чистового с малым сечением среза (типа алмазной обработки) точения при непрерывном резании, для окончательного нарезания резьбы токарными резцами и развертывания отверстий при обработке чугуна, цветных металлов и их сплавов и неметаллических материалов (резины, фибры, шифера, стекла, электродных углей и других материалов)  [c.544]

Еще одна методика электрохимического испытания, получившего наименование ЕС-испытание, опубликована Сауером и Баско в 1966 г. Вероятно, это последнее из наиболее ускоренных коррозионных испытаний качества изделий с никель-хромовыми покрытиями, наносимыми либо на сталь, либо на цинковый сплав. Электродный потенциал испытуемых образцов поддерживался потенциостатически равным 0,3 В. Образец являлся анодом по отношению к каломельному электроду сравнения в растворе, содержащем нитрат и хлорид натрия, азотную кислоту и воду. Анодный ток подавался циклически 1 мин — подача тока 2 мин — отключение. Максимальная плотность тока не превышала 3,3 мА/см . На практике такое значение плотности тока является предельным для изделии, имеющих никель-хро-мовые покрытия.  [c.164]


Дуговая сварка магния и магниевых сплавов металлическим электродом. В качестве электродных стержней применяют различные по составу магниевые сплавы. Электродные покрытия состоят из смеси хлористых и фтористых солей при содержании 10—30% фтористой соли. Покрытие может состоять такисе только из одних фтористых солей.  [c.586]

Сплав МНЖ 5-1 сваривается с углеродистыми и низколегированными сталями электродами со стержнем из сплава МНЖ 5-1 с покрытием ЗТ, а при сварке под флюсом ОСЦ-45 пли в защитных газах — электродной про1юлокой марки МНЖ 5-1.  [c.386]

Включения с более положительным электродным потенциалом являются катодами (рис. 132, а) Участки сплава, обогащенные компонентом., -с более положительным электродным потенциалом, являются, как правило, катодлми  [c.189]

В практике часто приходится измерять электродные потенциалы гетерогенных металлических сплавов. Пpo тeйuп м случаем является бинарный сплав, состоящий из двух металлов. Так как каждый из этих двух металлов в свою очередь является как минимум двухэлектродной системой, бинарный сплав следует рассматривать в простейшем случае уже как четырехэлектродную микрогальваническую систему, которая в большинстве практических случаев коррозии является системой короткозамкнутой.  [c.297]

В сочетании с электрохимической катодной заш,итой, которая весьма экономична в комбинации с высококачественным защитным покрытием. Электрохимическая катодная защита осуществляется в двух вариантах а) с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) б) с применением протекторов из металлов с электродным потенциалом более отрицательным, чем у стали (магний, цинк, алюминий или их сплавы).  [c.394]

Схема установки для измерения электродных потенциалов металлов при погружении их в электролиты приведена на рис. 343. Специальные установки позволяют произвс дить параллельные измерения электродных потенциалов на большом числе металлических образцов, что значительно экономит время. На рис. 344 дана принципиальная схема микроэлектрохимического метода измерения электродных потенциалов структурных составляющих поверхности сплавов. Разработан целый ряд установок для автоматической регистрации быстрых изменений потенциала.  [c.456]

Одним из способов повышения пассивируемости сплава является рассмотренное выше торможение протекания анодного процесса. Благодаря работам, выполненным в Советском Союзе, стал возможен и другой зффекзивнын способ повышения пассивного состояния сплавов путем их легирования добаш<ами катодных металлов. При этом способе происходит смегцение электродного потенциала сплава в положительную сторону за счет увеличения като,дно1[ эффективности системы.  [c.66]

Из рассмотрения кинетики электродных процессов известно, что наличие катодных составляющих в большинстве случаев приводит к усиленной коррозии сплавов или, в случае коррозии металлов с кислородной деполярпзацнсй при диффузионном контроле, оказывает малое вл1ияпие. Однако исследования II. Д. Т(змашова и Г. П. Черновой показали, что возможно облегчение наступления пассивного состояния хромоникелевой нержавеющей стали при легировании ее небольшими присадками  [c.66]

Хром относится к самопассивирующимся металлам, так что при механическом повреждении пассивной пленки она легко самопроизвольно восстанавливается и защитные свойства ее не теряются. Предполагается, что толщина слоя окислов на поверхности хромистых сталей составляет несколько молекулярных слоев. Пассивность хромистой стали приводит к сильному торможению анодного процесса коррозии и сопровождается сдвигом электродного потенциала сплава в положительную сторону.  [c.214]

Таким образом, наиболее склонен к порообразованию алюминий и его сплавы. В сварочной технологии на возникновение пор влияет время пребывания сварочной ванны в жидком состоянии, что зависит от скорости сварки. При малой скорости сварки алюминия водород успевает покинуть ванну и наплавленный металл будет плотным, при больших скоростях сварки (Исв>50м/ч) водород не успевает выделиться из кристаллизующегося металла и образовать поры, а при скорости сварки 20 м/ч обычно возникают поры. При сварке алюминия и его сплавов типа АМгб требуются особые меры для очистки кромок свариваемых изделий и тщательная подготовка электродной проволоки, а также использование аргона, имеющего минимальную влажность (Г. Д. Никифоров).  [c.346]

В случае многофазных сплавов степень травимости будет еще более различна. Взаимодействие металла с реактивом обычно идет по следующей схеме. Так как структура поверхности микрощлифа неоднородна, то, следовательно, различные ее составляющие имеют различный электродный потенциал и при погружении в реактив поверхность будет представлять собой целый комплекс микрогальванических эле-  [c.312]

Защиту от контактной коррозии осуществляют рациональным выбором контактирующих металлов и сплавов, введ 1нием изоляционных прокладок между металлами с различными электродными потенциалами, а также нанесением мастик, герметиков или металлических покрытий на детали,сочленяемые в процессе сббрки, введением ингибирующих добавок.  [c.40]

При взаимодействии на поверхности сплава растворов электролитов структурные составляющие корродируют со скоростями, которые зависят от их электрохимических свойств, состава коррозионной среды и величины электродного потенциала. В общем случае при данном электродном потенциале сплава скорости коррозии структурных составляющих paзличн J. Межкристаллитная коррозия сплава будет иметь место при наличии, по крайней мерэ, следующих условий /9/  [c.84]


Благоприятное действие дооавок кремния и титана на коррозионную стойкость алюминиевых покрытий на стали заключается в появлении новой, отличной от чистого алюминия структуре. В алюминиевом сплаве, начиная от содержания 0,6 % кремния, фиксируются две структурные составляющие, из которых ок >аза имеет электродный потенциал, близкий к чистому алюминию, тогда как 3-фаза катодна по отношению к алюминию и потенциал ее близок к потенциалу чистого кремния (-0,66 В). Вследствие этого подобные покрытия можно рассматривать как алюминиевые с катодной добавкой, что подтверждается характером изменения стационарного потенциала с ростом содержания кремния. С увеличением плотности тока на анодных участках и степени облагораживания потенциала облегчается возможность перехода анодных участков в пассивное состояние.  [c.94]

Протекторная эащита. Принцип защиты катодной поляризацией с помощью протекторов состоит в образовании гальванической пары, катодом в которой служит защищаемое сооружение, а анодом — протектор (рис. 32). Металл протектора должен иметь электродный потенциал, более отрицательный, чем электродный потенциал загцищаемого металла. Так, по отношению к железу или его сплавам, имеющим электродный потенциал около минус 0,44 В по водородному электроду, в качестве протекторов можно использовать магний, обладающий электродным потенциалом минус 2,37 В, алюминий — минус 1,66 В, цинк — ми- ус 0,76 В. При протекторной защите разрушается протектор.  [c.77]


Смотреть страницы где упоминается термин Сплавы электродные : [c.362]    [c.254]    [c.251]    [c.188]    [c.236]    [c.50]    [c.338]    [c.365]    [c.398]    [c.107]    [c.111]    [c.169]    [c.181]    [c.144]    [c.265]   
Машиностроение Энциклопедический справочник Раздел 2 Том 4 (1947) -- [ c.252 ]



ПОИСК



Автоматическая наплавка электродными износоустойчивыми сплавами

Вахидов, В И. Волохова. Исследование электроосаждения никель-фосфорных сплавов в условиях разделения электродных пространств

Волохова, Р. С. Вахидов. Исследование электроосажденпя нпкель-фосфорных сплавов в условиях разделения электродных пространств

Наплавка зернообразными и электродными сплавами

Распределение электродных потенциалов на поверхности металлов и сплавов

Современные промышленные электродные сплавы и их производство

Электродные сплавы твёрдые



© 2025 Mash-xxl.info Реклама на сайте