Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические жаростойкие

Стандартом предусматриваются технические требования, в том чис> ле механические свойства болтов, винтов, шпилек и гаек, изготовляемых из коррозионностойких жаропрочных, жаростойких и теплоустойчивых сталей и цветных сплавов. Вид покрытия выбирают по ГОСТ 14623—69, а толщину — по  [c.181]

Механические свойства легированных литейных сталей определяются количеством легирующих элементов. Легирование значительно повышает механические и эксплуатационные свойства (жаропрочность, коррозионную стойкость, износостойкость и т. д.). Например, марганец повышает износостойкость, хром — жаростойкость, никель—коррозионную стойкость и т. д.  [c.165]


Антегмит применяется главным образом в качестве химически стойкого теплопроводного материала. Этот материал может быть получен и жаростойким. Новые марки АТМ-10 и АТМ-1Г обладают значительно меньшей механической прочностью, чем АТМ-1, но их теплопроводность и другие свойства выше. Физикомеханические свойства материалов ATM приведены в табл. 57.  [c.453]

Применение жароупорного бетона допустимо до температур 1200—1300°С. Жароупорный бетон нашел применение в химической промышленности для футеровки механических колчеданных печей. Разработаны конструкции таких печей из армированного жаростойкого бетона без металлического корпуса.  [c.459]

Аустенитные жаропрочные и жаростойкие стали имеют значительное количество марок (табл. 13.9) их механические свойства приведены в табл. 13.10 и 13.11.  [c.213]

Мп с N1 образует значительную область твердых растворов (рис. 13.15, б), повышая жаростойкость и улучшая механические свойства сплавов.  [c.217]

Материал по каждой марке стали и сплава включает следующие данные заменитель марки стали и сплава, вид поставки, назначение, содержание химических элементов в процентах по массовой доле, температуры критических точек, механические свойства, жаростойкость, коррозионная стойкость, технологические свойства, свариваемость, литейные свойства, температурный интервал ковки и условия охлаждения после ковки, обрабатываемость резанием, прокаливаемость, флокеночувствительность, склонность к отпускной хрупкости.  [c.8]

Назначение — клапаны авиадвигателей, автомобильных и тракторных дизельных двигателей, крепежные детали двигателей. Сталь жаростойкая и жаропрочная мартенситного класса обладает высокими механическими свойствами до 600 °С, однако при длительных выдержках при 500 °С и особенно при 600 °С ударная вязкость резко снижается до 150 кДж/м .  [c.456]

При изготовлении литых деталей в двигателестроении для авиации и космических кораблей, буровых установок применяются многообразные металлы и сплавы особого назначения (жаропрочные, жаростойкие, износостойкие и др.). Как правило, свойства чистых жаропрочных металлов соответствуют одновременно всем этим требованиям. Определенным и заданным физико-механическим свойствам отвечают специальные сплавы на основе жаропрочных металлов, легированные тугоплавкими элементами.  [c.30]


При легировании сталей тугоплавкими элементами (Сг, W, Ti, Мо) значительно повышаются конструкционные показатели и фи-зико-механические свойства, износостойкость, жаропрочность и жаростойкость и другие свойства.  [c.44]

Молибден увеличивает жаростойкость стали (не ухудшая се теплопроводность) и улучшает механические свойства даже при высокой рабочей температуре формы.  [c.57]

Углеродистые стали при высоких температурах сильно окисляются, на их поверхности образуется окалина. В связи с этим применяют специальные жаростойкие и жаропрочные стали, содер-жаш,ие различные легирующие добавки. Жаростойкостью называется свойство материала противостоять при высоких температурах химическому разрушению поверхности, а жаропрочностью — способность сохранять при высоких температурах механические свойства. В настоящее время созданы специальные сплавы, а также металлокерамические материалы, надежно работающие при температурах до 1000 С.  [c.123]

В зависимости от условий эксплуатации конструкционные порошковые материалы (КПМ) подразделяют на две группы материалы, заменяющие обычные углеродистые и легированные стали, чугуны и цветные металлы материалы со специальными свойствами — износостойкие, инструментальные, жаропрочные, жаростойкие, коррозионностойкие, для атомной энергетики, с особыми физическими свойствами (магнитными, электро- и теплофизическими и др.), тяжелые сплавы, материалы для узлов трения — антифрикционные и фрикционные и др. Физико-механические свойства КПМ при прочих равных условиях определяются плотностью (или пористостью) изделий, а также условиями их получения. По степени нагруженности порошковые детали подразделяют на четыре группы (табл. 7.1).  [c.174]

Жаропрочность — способность металлов выдерживать механические нагрузки без существенной деформации и разрушения при повышенной температуре. Основные критерии оценки жаропрочности (например, на срок 100 тыс. ч) предел длительной. прочности Одп— напряжение, при котором металл разрушается через 100 тыс. ч работы (испытания) при высокой (выше 450 °С) температуре условный предел ползучести % — напряжение, которое при рабочей температуре вызывает скорость ползучести металла Уд = Ю %/ч, что соответствует 1 %-ной суммарной деформации за 100 тыс. ч или Va = Ю мм/ч. Окалиностойкость (жаростойкость) — характеризует способность стали сопротивляться окисляющему воздействию газовой среды или перегретого пара при температуре 500—800 °С и выше без заметного снижения ее механических свойств в течение расчетного срока службы. Критерием окалиностойкости служит удельная потеря массы при окислении металла за определенный период времени, например за 100 тыс. ч.  [c.222]

Изыскание средств защиты материалов жаростойкими, электроизолирующими, теплоустойчивыми, гидрофобными и другими покрытиями тесно связано с историей развития Института химии силикатов АН СССР. Уже в 1954 году — через шесть лет, прошедших со дня основания Института, в Лаборатории кремнийорганических соединений под руководством профессора Б. Н. Долгова были успешно завершены работы по созданию гибких теплоустойчивых электроизоляционных и влагостойких покрытий, нашедших широкое применение в электротехнике, радиотехнике, электронике и других отраслях техники. Такие покрытия были созданы на основе различных кремнийорганических соединений и силикатных материалов, подвергаемых специальной механической обработке и последующей тепловой полимеризации. Работы по созданию покрытий на основе органосиликатных материалов явились примером удачного использования результатов научных исследований в области синтеза новых кремнийорганических соединений для решения важных практических задач.  [c.3]

МЕТОДЫ ВЫСОКОТЕМПЕРАТУРНЫХ МЕХАНИЧЕСКИХ ИСПЫТАНИЙ НЕОРГАНИЧЕСКИХ ЖАРОСТОЙКИХ ПОКРЫТИЙ  [c.50]

Поэтому, наряду с изысканием новых составов жаростойких покрытий и методов их нанесения, необходимо разрабатывать методы механических испытаний покрытий и конструктивных элементов, особенно при высоких температурах, методы расчета для прогнозирования поведения покрытий в эксплуатационных условиях.  [c.51]


При высокотемпературных механических испытаниях материалов с жаростойкими покрытиями, особенно при испытаниях на термостойкость, чрезвычайно важно зафиксировать момент начала механического разрушения покрытия — момент появления первой трещины. Ограниченные возможности визуального наблюдения за  [c.57]

Косвенным доказательством восстановления металлов из стекла могут явиться, по-видимому, результаты испытаний на жаростойкость образцов после механического удаления силикатных пленок. Из рис. 2 видно, что скорость окисления железа, с которого удалена пленка стекла, меньше скорости окисления исходного железа. Так, привес армко-железа составляет 3.0 мг/см ,  [c.258]

В табл. 1 приведены некоторые свойства покрытий 1М и БМ. Видно, что температура формирования этих покрытий колеблется в интервале 1050—1220 . Наряду с жаростойкостью, покрытия имеют повышенное сопротивление к механическим и термическим ударам, а по твердости не уступают стеллиту (табл. 2).  [c.269]

В серии опытов по определению оптимального режима горячего прессования титана было установлено, что он хорошо прессуется при температурах, не превышающих 1300° С. Известно также, что силицид титана обладает хорошей жаростойкостью. Для увеличения механической прочности покрытия [3] порошок титана смешивался с порошком молибдена в различных соотношениях.  [c.24]

Высоколегированные стали и сплавы по сравнению с менее легированными обладают высокой хладостойкостью, жаропрочностью, коррозионной стой костью и жаростойкостью. Эти важнейшие материалы для химического, нефтяного, энергетического машино-строенпя и ряда других отраслей промышлепности используют при изготовлении конструкций, работающих в широком диапазоне температур от отрицательных до положительных. Несмотря на общие высокие свойства высоколегироваьшых сталей, соответствующий подбор состава легирования определяет их основное служебное назначение. В соответствии с этим их можно разделить на три группы коррозионно-стойкие, жаропрочные и жаростойкие (окалиностойкие). Благодаря их высоким механическим свойствам при отрицательных температурах высоколегированные стали и сплавы применяют в ряде случаев и как хладостойкие.  [c.279]

Жаропрочные стали и сплавы обладают высокими механическими свойствами при повышенных температурах и способностью сохранять их в данных условиях в течение длительного времени. Для придания отих свойств сталям н сплавам их обычно легируют элементами-упрочнителями, молибденом и вольфрамом (до 7% каждого). Важной легирующей присадкой, вводимой в пекоторые стали п сплавы, является бор. В ряде случаев к этим металлам предъявляется требование и высокой жаростойкости.  [c.281]

Сварочный нагрев и последующее охлаждение настолько изменяют структуру и свойства чугуна в зоне расплавления п около-пювной зоне, что получить сварные соединения без дефектов с необходимым уровнем свойств оказывается весьма затруднительно. В связи с этим чугун относится к материалам, облада-10ш,им плохой технологической свариваемостью. Тем не менее сварка чугуна нмеет очень большое распространение как средство исправления брака чугунного литья, ремонта чугунных изделий, а иногда и при изготовлении конструкций. Качественно выполненное сварное соединение должно по меньп1ей мере обладать необходимым уровнем механических свойств, плотностью (непроницаемостью) и удовлетворительной обрабатываемостью (обрабатываться реягущим инструментом). В зависимости от условий работы соединения к нему могут предъявляться и другие требования (например, одноцветность, жаростойкость н др.).  [c.324]

К полам промышленных зданий, в зависимости от характера производства, предъявляются различные требования повышенная механическая прочность, жаростойкость, водонепроницаемость, химическая стойкость, беспыльность, малая истираемость и т. д.  [c.403]

Отличительной особенностью высокопрочного чугуна являются его высокие механические свойства временное сопротивление 373— 1180 МПа, относительное удлинение 2—17 %, твердость НВ 137— 360, что обусловлено шаровидиой формой графита, который в меньшей степени, чем пластинчатый графит в сером чугуне, ослабляет сечение металлической массы и не оказывает на нее надрезающего действия. Этот чугун имеет высокую износостойкость, хорошую коррозионную стойкость, теплостойкость, жаростойкость, хладностой-кость и т. д. Высокопрочный чугун широко используют взамен литых стальных заготовок.  [c.161]

Чистый никель в химическом машиностроении нашел сравнительно ограниченное применение, несмотря на то что, помимо коррозионной стойкости, он обладает повышенной жаростойкостью, значительной пластичностью, хорошими механическими показателями и способностью подвергаться различным видам механической обработки (никель легко прокатывается в горячем и холодном состоянии). Объясняется это тем, что никель не имеет особых преимугцеств по сравнению с нержавеющими сталями, но в некоторых средах, в которых легированные стали непригодны, нашли примеггеиие сплавы никеля с медью и его сплавы с молибденом.  [c.255]

Сплавы магния. Легирование магния некоторыми элементами значительно повышает его коррозионную стойкость и жаростойкость, улучшает механическую прочность, а также технологические свойства. Так, сплавы, содержащие алюминий (до 10%), пассивируются значительно лучше, чем магний так же влияет и присадка цинка (до 3%). Наиболее эффективной нрнсадкон является марганец, введение которого в магний достаточно в пределах от 1,3 до 1,5%. Его положительное влияние объясняют повышением перенапряжения водорода и образованием пленки из гидратированной окиси марганца. При добавке марганца в сплав Mg—Л1, максимум коррозионной стойкости достигается при содержании 0,5%, Мп.  [c.274]


Никель является сильным аутенитообразующим элементом. Железо и никель при затвердевании образуют у-твердый раствор в широком интервале концентраций. Влияние никеля на повышение жаростойкости хромоникелевой стали проявляется в повышении механических свойств при высоких температурах в результате наличия аустенитной структуры, в увеличении плотности оксидной пленки, усилении ее сцепления с основным металлом. Степень влияния никеля на жаростойкость непрерывно увеличивается с ростом температуры.  [c.49]

Седла клапанов. Седла клапанов двигателей внутреннего сгорания работают в особо тяжелых ударно-переменных нагрузках и высоких температурных (700 - 1000°С) режимах. Поэтому к жаропрочному материалу для седел клапанов предъявляют особые требования необходимы высокая жаростойкость и сопротивление к газовой эрозии, коррозия и ползучести, высокие механические свойства, хорошая теплопроводность и небольшой коэ(1зфициент линейного расширения. В составе чугуна, кроме основных элементов (С, Si, Мп, S, Р), содержатся карбидообразующие элементы 2,75 - 3,25% Сг 4 - 5% Мо и до 0,3% Ni.  [c.66]

Углерод расположен в Периодической системе элементов Д.И. Менделеева под номером 6 и имеет температуру плавления 3900°С, кипения 4825°С, атомную массу 12,0115. Структура его гексагональная и типа алмаза, графита а = 0,356 нм г = 0,076 нм. Роль углерода при формировании физико-механических и эксплуатационных (износостойких, жаростойких) свойств жаропрочнЕ>1х отливок очень велика.  [c.72]

Среди сплавов высокого сопротивления, которые, помимо нихрома, широко используются для изготовления различных нагревательных элементов, необходимо отметить жаростойкие сплавы фехрали и хромали. Они относятся к системе Fe—Сг—А1 и содержат в своем составе 0,7 %марганца, 0,6% никеля, 12—15% хрома 3,5—5,5 % алюминия и остальное — железо. Эти сплавы отличаются высокой стойкостью к химическому разрушению поверхности под воздействием различных газообразных сред при высоких температурах. Имеют удовлетворительные технологические свойства и хорошие механические характеристики (табл. 4.4), что позволяет достаточно легко получать из чих проволоку, ленты, прутки и другие полуфабрикаты, которые способны свариваться и выдерживать большие механические нагрузки при высокой температуре без существенных деформаций.  [c.128]

Металлид П1зА1 превосходит промышленные никелевые сплавы по жаростойкости, но отличается от них малыми прочностью (Ов=300-р -Ь400 МПа) и пластичностью. Легирование его хромом, вольфрамом, титаном и другими элементами позволяет улучшить механические свойства даже при наличии примесей (до 0,003 % каждой) серы, фосфора, свинца, висмута и сурьмы (табл. 85).  [c.189]

Бронзы типа Бр.ЛЖП обладают высокими механическими свойствами, износостойкостью и жаростойкостью. Они идут на изготовление ответственных деталей в авнамоторостриеини (сеяла клананов, направляющие втулки клапанов), работаюн нх г ри температурах до 500°С, больших удельных давлениях н высоких скоростях.  [c.231]

Легированной называется сталь с присадками различных химических элементов, придаюш,их стали повышенные механические и другие свойства жаростойкости, коррозионной стойкости. В качестве легирующих элементов чаще всего применяются хром (X), никель (Н), вольфрам (В), ванадий (Ф), молибден (М).  [c.240]

Эффективность иснользования неорганических жаростойких покрытий, прежде всего, определяется стабильностью механических характеристик — несущей способности и жесткости.  [c.50]

Известно [1], что жаростойкие покрытия способны защищать металл от газовой коррозии, сохранять его механическую прочность в процессе службы при высоких температурах, придавать поверхности металла требуемые специфические свойства. Поэтому применение жаросто11ких покрытий для колеса турбины, очевидно, является эффективным способом повышения надежности и срока службы турбокомпрессора.  [c.262]

Для алюминирования использован расплав состава (вес. %) барий хлористый 48, калий хлористый 34, натрий хлористый 13, алюминий фтористый 5. Температура плавления солевой смеси 543° С. Порошки алюминия и железа задавали из расчета образования ферроалюминия РеА1з и небольшого избытка свободного алюминия использовали механическое перемешивание расплава. Порошки выдерживали в расплаве при температуре 600° С 5 ч, чтобы мог образоваться ферроалюминий. Исследование влияния добавок фторида алюминия и порошковой фазы на глубину покрытия показало, что оптимальным содержанием является 3— 5 вес. % А1Рз и 10 вес. % порошка ферроалюминия. После выдержки в расплаве образцы охлаждали на воздухе, отмывали от солей, затем подвергали отжигу (950° С в течение 2 ч) и испытывали на жаростойкость.  [c.79]

Важной технической проблемой является увеличение срока службы технологической оснастки стеклоформирующих машин. В частности, к матрицам и пуансонам пресс-форм предъявляются повышенные требования по коррозионной стойкости, жаростойкости, а также по сопротивлению износу и механической прочности. Поскольку разрушение в подавляющем большинстве случаев начинается с поверхности, то для практического решения вопроса достаточно защитить лишь ее. Это можно осуществить с помощью силицидных покрытий. Однако известные методы их получения обладают рядом технологических недостатков, таких как большая трудоемкость и продолжительность процесса. При этом диффузионные слои пористы, хрупки, недостаточно тверды.  [c.194]


Смотреть страницы где упоминается термин Механические жаростойкие : [c.234]    [c.236]    [c.92]    [c.52]    [c.245]    [c.4]    [c.347]    [c.259]    [c.337]    [c.63]   
Машиностроение Энциклопедический справочник Раздел 2 Том 4 (1947) -- [ c.44 , c.53 , c.55 ]



ПОИСК



Алюминиевый чугун жаростойкий Механические свойства

Алюминиевый чугун жаростойкий карбидного состава (пирофераль) 216 Механические и физические свойства

Жаростойкость

Механические высоколегированные, коррозионно-стойкие, жаропрочные н жаростойкие Механические свойства 26 — Химический состав

Механические свойства болтов, винтов и шпилек из коррозионностойких, жаропрочных, жаростойких и теплоустойчивых сталей при нормальной температуре (табл

Механические свойства гаек из коррозионностойкйх, жаростойких, жаропрочных и теплоустойчивых сталей при нормальной температуре (табл

Назначение Особенности Особенности ковки жаростойкая — Механические

Силумин жаростойкий Физико-механические свойства

Стали жаростойкие механические свойства сталей фер

Физико-механические А12 жаростойкие

Чугун серый, модифицированный, жаростойкий и антифрикционный. Механические свойства и химический состав

жаростойкие Механические свойства и допускаемые напряжения 71-74 серые - Классификация по ИСО и национальны



© 2025 Mash-xxl.info Реклама на сайте