Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость движение по Пуансо

Вопросы устойчивости движения до Пуансо  [c.94]

ВОПРОСЫ УСТОЙЧИВОСТИ ДВИЖЕНИЯ по ПУАНСО 97  [c.97]

Помимо проблемы устойчивости движения, одной из классических задач теоретической механики является задача о движении твердого тела вокруг неподвижной точки, т. е. тела, закрепленного при помощи сферического шарнира. Этой задачей занимались самые выдающиеся ученые-механики Эйлер, Лагранж, Пуансо. Эйлер дал аналитическое решение этой задачи в простейшем случае, а именно в случае движения тела вокруг неподвижной точки по инерции. Пуансо для этого же случая движения твердого тела вокруг неподвижной точки дал наглядную геометрическую картину этого движения. Лагранж решил эту задачу в том случае, когда твердое тело имеет ось динамической симметрии, проходящую через неподвижную точку. Задача о движении твердого тела вокруг неподвижной точки имеет первостепенное значение для теории гироскопов, которая находит широкое применение в различных областях современной техники. После Эйлера и Лагранжа многие ученые безуспешно пытались найти новые случаи решения этой задачи. В 1888 г. Парижская академия наук объявила конкурс на лучшее теоретическое исследование движения твердого тела вокруг неподвижной точки. Премию в этом конкурсе получила первая русская женщина-математик Софья Васильевна Ковалевская (1850—1891). В своей работе Задача о движении твердого тела вокруг неподвижной точки она дала полное решение этой задачи в новом случае, значительно более сложном по сравнению со случаями Эйлера и Лагранжа. Эта работа доставила С. В. Ковалевской мировую известность и, по выражению Н. Е. Жуковского, немало способствовала прославлению русского имени .  [c.26]


Пользуясь понятием устойчивости, введенным в 5, этот вывод можно сформулировать по-другому в случав Эйлера - Пуансо одна из осей, соответствующая наибольшему или наименьшему моменту инерции, совершает устойчивое движение вокруг вектора кинетического момента, а две другие - неустойчивое.  [c.36]

Пуансо, Луи (3.1.1777-5.12.1859) — французский инженер, механик и математик. Дал геометрическую интерпретацию случая Эйлера, ввел понятия эллипсоида инерции, мгновенной оси вращения и связанные с ней понятия — полодий и герполодий (1851 г.). Привел геометрический анализ устойчивости вращения твердого тела вокруг главных осей эллипсоида инерции. Пуансо, в противовес Лагранжу, настаивал на преимуществе геометрических методов в механике над аналитическими — во всех этих решениях мы видим только вычисления без какой-либо ясной картины движения тела [252]. Идеи Пуансо далее были поддержаны и развиты П. Е. Жуковским и С. А. Чаплыгиным. Геометриче-  [c.21]

Приведенные рисунки иллюстрируют аналогию между движением трех вихрей и динамикой твердого тела. Сравнивая рис. 3 а (в случае равных интенсивностей) с фазовым портретом задачи Эйлера—Пуансо (см., например, [12]), можно связать коллинеарные конфигурации (лежащие на прямой L = 0) с неустойчивыми перманентными движениями твердого тела вокруг средней оси эллипсоида инерции, томсоновские решения (при которых L/G = 1) — с вращениями вокруг большой (малой) оси эллипсоида инерции. Особые точки системы, которые соответствуют периодическим решениям задачи двух вихрей (два из трех вихрей всегда слиты в одной точке, а их интенсивности складываются), лежащие на прямой L = О, можно связать с устойчивыми перманентными вращениями вокруг малой (большой) оси эллипсоида инерции. При прохождении системой коллинеарного положения (три  [c.51]

В 4, излагая исследование Пуансо, мы установили, что перманентные вращения тела вокруг большой и малой осей эллипсоида инерции устойчивы в том смысле, что при малой погрешности в начальных условиях —при малом отклонении оси вращения от оси эллипсоида —мы получим движение, мало отличающееся от перманентного вращения. Перманентное вращение вокруг средней оси неустойчиво. Здесь невозмущенным движением является перманентное вращение, а возмущенным — то движение, которое возникнет в результате малой ошибки в начальный момент времени.  [c.428]


Пр и м е р 4. Как известно , движение тела вокруг неподвижной точки, совпадающей с центром тяжести, в отсутствие других сил (случай Эйлера) можно представить, согласно интерпретации Л. Пуансо, качением эллипсоида инерции тела относительно неподвижной точки по неподвижной плоскости. При этом точка пересечения мгновенной оси вращения с поверхностью эллипсоида инерции (полюс) описывает на поверхности эллипсоида кривые полодии), приблизительное расположение которых показано на рис. 109. Вблизи концов наибольшей АА и наименьшей ВВ осей эллипсоида полодии представляют собой замкнутые кривые, окружающие эти концы подобно кривым, окружающим особую точку типа центра. Вблизи концов средней оси СС полодии располагаются так, как фазовые траектории около особых точек типа седла. По движению полюсов по поверхности эллипсоида можно судить об устойчивости или неустойчивости вращений вокруг осей, совпадающих с осями эллипсоида инерции. Вращения вокруг осей, совпадающих с наибольшей или наименьшей осями эллипсоида, будут, очевидно, устойчивыми, так как малое отклонение оси вращения переведет полюс на близкую к концу оси эллипсоида полодию, по которой он и будет двигаться в возмущенном движении, оставаясь в ближайшей окрестности невозмущенного состояния. Вращение вокруг средней оси неустойчиво. Малое отклонение мгновенной оси переместит полюс на полодию, по которой он будет удаляться от конца средней оси эллипсоида. Рис. 109  [c.439]

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ПУАНСО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА С ОДНОЙ НЕПОДВИЖНОЙ ТОЧКОЙ ПО ИНЕРЦИИ. УСТОЙЧИВОСТЬ СТАЦИОНАРНЫХ ВРАЩЕНИЙ. РЕГУЛЯРНАЯ ПРЕЦЕССИЯ  [c.128]

Новое выражение принципа позволяет получить тот же самый результат. Отнесем тело к подвижной системе отсчета, совершающей точно такое же прецессионное движение с угловой скоростью (0J = ф, выражение которой мы только что написали. Фиктивная сила, которую мы должны прибавить в относительном движении и которая определяется принципом в его второй форме, представляет собой в точности силу, уравновещивающую силу Р. Поэтому относительное движение тела будет движением по Пуансо, и так как ось тела является постоянной и устойчивой осью вращения, вокруг которой происходит в основном относительное вращение, то эта ось будет оставаться почти неизменной в подвижной системе  [c.178]

В случае отсутствия внешних моментов твердое тело будет устойчиво вращаться вокруг оси максимального или минимального момента инерции. Вращение вокруг промежуточной оси представляет собой состояние неустойчивого равновесия. При вращении твердого тела ось вращения меняет свое положение в теле. Геометрическое место пересечений мгновенных осей вращения с эллипсоидом инерции называется полодией. Согласно геометрической интерпретации Пуансо, неподвижная точка эллипсоида находится выше некоторой фиксированной плоскости на расстоянии, пропорциональном квадратному корню из кинетической энергии, и сама плоскость перпендикулярна вектору кинетического момента. Вектор угловой скорости, а следовательно, и ось вращения направлены из неподвижной точки в точку касания фиксированной плоскости сэллипсоидом инерции. Вид полодий (рис. 25) показывает, что вращение в окрестности промежуточных осей, где полодии расходятся, будет неустойчивым. Это можно легко продемонстрировать, если бросить книгу в воздух, одновременно придав ей вращательное движение (неустойчивость вращения будет более заметна, если книга не перевязана лентой).  [c.219]

Если эти условия соблюдены тоадо, ротор совершает движения, исследованные Л. Эйлером (1756) и Л. Пуансо (1834). В частности, когда начальная угловая скорость сообщена ротору вокруг оси наибольшего (или наименьшего) момента инерции, он продолжает устойчивое вращение вокруг этой оси, а сама она сохраняет неизменную ориентацию в инерциальном пространстве, к чему и стремятся при построении свободного гироскопа.  [c.166]


Курс теоретической механики Том 2 Часть 2 (1951) -- [ c.94 ]



ПОИСК



Вопросы устойчивости движения по Пуансо

Геометрическая интерпретация Пуансо движения твердого тела с одной неподвижной точкой по инерции Устойчивость стационарных вращений Регулярная прецессия

Движение Эйлера-Пуансо устойчивое

Движение по Пуансо

Движение устойчивое

Пуансо

Устойчивость движения



© 2025 Mash-xxl.info Реклама на сайте