Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Планирование исследований

Определяющая роль автоматизации процессов проектирования и производства в решении важнейших экономических и социальных задач по повышению производительности труда, быстрейшему созданию и внедрению изделий новой техники, повышению технико-экономического уровня выпускаемой продукции неоднократно подчеркивалась в директивных материалах партии и правительства. В решениях Пленумов и совещаний в ЦК КПСС по научно-техническому прогрессу указывается на необходимость массового внедрения и интеграции автоматизированных систем на всех этапах создания изделий новой техники (планирование, исследование, проектирование и производство).  [c.6]


Прогнозы развития науки и техники имеют большое значение для планирования исследований и разработок, так как этим объектам по самой природе присуща высокая степень неопределенности. Невозможно предусмотреть научные открытия или изобретения, но существует возможность определения главных направлений развития науки и техники и вытекающих из них научно-технических проблем.  [c.11]

Более достоверные и объективные оценки значений характеристик ремонтопригодности могут быть получены в результате экспериментальных исследований опытных или серийных машин. Достоинством этого метода является возможность воспроизведения определенных условий проведения эксперимента, а также возможность планирования исследований с учетом случайного характера изменения оцениваемых характеристик. Кроме того, правильность модели, которая используется при планировании эксперимента, может быть проверена по результатам наблюдений. Варьируя точность и достоверность оценки характеристик ремонтопригодности, можно устанавливать приемлемый для определенных условий решения задачи объем (длительность) испытаний.  [c.130]

Необходимость предварительного планирования исследований и разработка возможных вариантов.  [c.16]

Принцип системности заключается в том, что при создании ТК процессы планирования, исследования и проектирования, изготовления, эксплуатации и ремонта рассматривают во взаимосвязи.  [c.427]

Система обеспечения качества (СОК) охватывает все стадии общественного процесса производства и потребления изделий, а именно планирование, исследование и проектирование, производство (изготовление одиночное, мелкосерийное, среднесерийное, крупносерийное или массовое), погрузку, транспортировку и разгрузку, эксплуатацию (потребление), хранение, консервацию и ремонт.  [c.205]

Фаза планирования — исследование конкурирующих способов достижения поставленных целей с учетом таких факторов, как внешний вид, экономика, технологичность изготовления, надежность, простота ремонта и обслуживания, и согласование потока информации с реальными возможностями человека по ее переработке.  [c.20]

Большая часть специалистов по катодной защите, по-видимому, не расположена к выражению мнения о том, какой же из этих двух механизмов проявляется на практике Ч Этот вопрос представляет не только академический интерес, так как если действует второй механизм, то тогда следует два практически важных вывода 1) катодная защита, как нам это известно, требует присутствия кальция (или магния) в почвенной воде 2) временные перерывы в подаче тока не имеют значения, так как известковые слои, отложившиеся в трещинах покрытия, когда протекал ток, будут оставаться и предупреждать переход железа в электролит до тех пор, пока вновь не потечет ток. Отсюда следовали бы практические рекомендации или а) поддерживать потенциал, при котором переход железа незначительный, равный количеству, теряемому путем диффузии, или б) поддерживать слой извести, который будет связывать ионы железа. Тщательное планирование исследований по определению различий между механизмами запаздывает.  [c.264]


ВОПРОСЫ ПЛАНИРОВАНИЯ ИССЛЕДОВАНИЯ  [c.306]

Исследовательская работа не только сводится к экспериментам ее проводят и вне их на основе непосредственных наблюдений. Так что выражение планирование исследований оказывается более емким, а следовательно, и более подходящим, чем введенный Р. Фишером (1930) термин планирование экспериментов . Конечно, и термин эксперимент можно применять в более широком смысле, понимая под ним любые испытания, проводимые исследователем в отношении изучаемого объекта. При всем разнообразии методов исследовательской работы задача планирования сводится к тому, чтобы при возможно минимальных объемах наблюдений получать достаточно полную информацию об изучаемых объектах.  [c.307]

Планирование исследования, в частности определение метода получения выборки и числа образцов (объем выборки), необходимых для испытания.  [c.224]

Корродирующие металлы являются сложными системами, которые часто не допускают изменения только одного фактора за один раз, ибо эти системы столь динамичны и внутренне связаны, что изменение одного фактора служит причиной изменения других, иногда очень многих факторов. Успешное проведение коррозионных исследований часто невозможно без их планирования, так как для предсказания и проверки требуется построение математической модели объекта исследования, которая, в частности, может быть использована для выбора оптимальных условий функционирования объекта.  [c.432]

Рассмотренный вариант архитектуры ПО САПР сравнительно прост, он пригоден для создания САПР средних размеров. Крупные промышленные САПР, функционирующие на сетях ЭВМ, имеют сложные, распределенные по ЭВМ мониторы, специальные обслуживающие подсистемы информационного обмена, управления технологическим оборудованием, планирования и управления ходом проекта. Такие САПР интегрированы с автоматизированными системами научных исследований, технологической подготовки производства, испытаний и с гибкими автоматизированными производствами. Их ПО отражает специфику конкретных предметных областей, принятые в них маршруты проектирования и структуру имеющихся на предприятии технических средств.  [c.31]

Для сведения к минимуму как времени исследования, так и размера модели эксперименты проводились в пористых средах с большой проницаемостью, средние значения которой составляли 310, 94 и 13 дарси. Более правильно было бы для достижения указанной цели применить математическую теорию эксперимента, в частности планирование. Принятые геометрические размеры модели пласта (длина 120 см и диаметр 4,97 см) в условиях эксперимента обеспечивали полное смешение любых заданных объемов смешивающихся оторочек, изменявшихся от 5 до 40% от объема пор, с вытесняемой жидкостью в пределах длины пути фильтрации.  [c.24]

В первой части рассмотрены способы получения научной информации— физический эксперимент (наблюдение явления в специально создаваемых и точно учитываемых условиях), математический эксперимент (получение информации на основе численного рещения системы дифференциальных уравнений, описывающих явление), аналоговый эксперимент (наблюдение явления иной природы, чем исследуемое, но имеющего одинаковое с ним математическое описание). Здесь рассмотрены также погрешности экспериментального исследования, методы планирования экспериментов, статистической обработки и обобщения их результатов.  [c.3]

При экспериментальном исследовании обычно выявляется зависимость основных характерных параметров явления от многих факторов. При достаточно широком диапазоне изменения этих факторов возникает необходимость проведения большого числа опытов при различном их сочетании. Математические методы планирования и анализа эксперимента позволяют выбрать для  [c.7]

Полученные опытным путем данные имеют такой же частный характер, как и данные, полученные численным путем в результате математического эксперимента и на основе метода аналогии. Поэтому рассмотренные выше методы математического планирования эксперимента и обобщения опытных данных применимы также при численном и аналоговом методах исследования физических явлений.  [c.8]

Закономерности явлений, определяющие рабочий процесс машины или аппарата, которые выявлены на основе теоретических или экспериментальных исследований, могут быть использованы для оптимизации конструктивных и режимных параметров разрабатываемых реальных аппаратов. Наивыгоднейшее сочетание параметров может быть найдено и экспериментальным путем на основе теории оптимального планирования эксперимента. Для отыскания экстремума критерия оптимальности конструкции разработан ряд методов (например, симплексный метод, метод наискорейшего спуска и др.), которые реализуются с помощью ЭВМ.  [c.8]


Численное исследование того или иного явления имеет много общего с физическим экспериментом. В том и другом случае результаты получаются в виде совокупности числовых значений параметров, а в дальнейшем могут быть обобщены на основе теории подобия программа расчетного исследования, так же как и программа физических экспериментов, может быть разработана с использованием теории планирования экспериментов и т. д. При этом роль экспериментальной установки выполняет ЭВМ, а физическое явление заменяется его математическим описанием или, точнее, математической моделью. Последний термин более точен, поскольку, с одной стороны, всякое физическое явление бесконечно сложно, а наши знания о нем не являются абсолютными, поэтому в любом случае математически возможно описать лишь какую-то модель этого явления, соответствующую современному уровню знаний с другой стороны, всегда целесообразно оперировать с наиболее простой моделью, отражающей, однако, важнейшие для рассматриваемой задачи стороны явлений, поэтому При формулировке задачи сознательно не принимаются во внимание многие несущественные особенности реального явления.  [c.52]

Математическое планирование экспериментов, которое предшествует постановке физического, математического и аналогового экспериментов и сопровождает их выполнение, является средством сокращения числа экспериментов и повышения достоверности выявляемых при исследовании зависимостей. Целью математического планирования эксперимента может быть также отыскание экстремальных значений исследуемых зависимостей с наименьшей за-  [c.109]

Если же изменить значения уровней факторов одновременно, то точки плана, построенного в соответствии с концепцией многофакторного эксперимента, расположатся в вершинах внешнего квадрата (-М, -Ы), (—1, -Ы), (—1, —1), (-Ы, —1) (см. рис. 6.5). Ясно, что при этом исследованная область изменения факторов будет больше. Отметим, что этот эффект тем ощутимее, чем больше размерность N факторного пространства. В самом деле, при планировании по методике однофакторного эксперимента опорные точки всегда располагаются на концах хорд длиной 2 единицы, при многофакторном планировании опорные точки располагаются на концах диаметров, длина которых 2 уЖ, т. е. в / раз больше.  [c.120]

Задача планирования эксперимента заключается, в выборе необходимых экспериментов (при минимальном их числе) и методов математической обработки полученных результатов и в принятии решения. Здесь следует отметать, что постановка эксперимента с применением методов математического планирования не только позволяет определить дальнейшие пути исследований Такой подход допускает в процессе эксперимента отсеивать факторы, не оказывающие существенного влияния на процесс.  [c.8]

Применение математических методов планирования эксперимента при исследовании процесса коррозии нефтепромыслового оборудования рассмотрено на следующем примере /4/.  [c.16]

Во втором издании (первое — в 1977 г.) рассмотрена эффективность производства и потребления новых видов продукции, подвергаемой термическому упрочнению. Приведены результаты исследования экономической эффективности различных способов термического упрочнения ряда видов проката и труб. Изложены вопросы планирования и экономического стимулирования производства термически упрочненной металлопродукции.  [c.40]

Вначале (оператор /) осуществляется ввод массива исходных данных-г-размеров сопряжения, действующих усилий, условий эксплуатации (например, концентрация абразива в смазке) и других с выявлением возможных пределов их изменения. Затем 1 еобходимо построить таблицу планирования эксперимента, в данном случае вычислений (оператор 2), из которой выбираются комбинации исходных данных при каждом цикле испытаний (оператор 5). Поскольку число входных параметров достаточно велико и каждый из них может изменяться в определенных пределах (1 ли иметь несколько уровней), то для выявления оптимального варианта необходимо проделать в общем случае большое число циклов расчета (экспериментов). Сокращение объема вычислений можно получить за счет исследования влияния только основных факторов, исследования влияния каждого из факторов лишь при частных значениях других, планирования многофакторного эксперимента (на основе латинского квадрата), случайной выборки комбинаций исходных факторов с учетом законов их распределения (метод Монте-Карло).  [c.360]

При таком планировании исследований даже в случае, когда в результатах измерений не будет исключена существеннан систематическая погрешность (практически одна и та же для результатов определения величин l и С2 в каждой паре проб), это не влияет на значение их разности. Отсюда ясно основное преимущество дифференциального метода — возможность обеспечения высокой точности значений — С2, не прибегая к межлабораторному эксперименту случайную погрешность результатов можно свести к разбросу, соответствующему показателю сходимости в сериях параллельных измерений.  [c.98]

Следует отметить успешное применение методов математического планирования эксперимента в исследованиях влияния отдельных компонентов сплавов или примесей и совместного влияния этих элементов на коррозионное поведение сплава. Эти методы используют также для выяснения допустимого содержания примесей (метод Бокса—Уильсона), для исследований состав многокомпонентной среды — коррозионная стойкость (метод симплексной решетки Шеффе), для построения математической модели атмосферной коррозии металлов (ИФХ АН СССР).  [c.432]

Комплексная автоматизация проектирования и производства изделий техники. Комплексная автоматизация охватывает проектирование и производство изделий и обеспечивается совокупностью автоматизированных систем. В эту совокупность входят автоматизированная система научных исследований (АСНИ), система автоматизированного проектирования (САПР), автоматизированная система технологической подготовки производства (АСТПП), автоматизированная система управления производством (АСУП) и гибкая производственная система (ГПС). В этом ряду АСНИ служит для выполнения научно-иссле-довательских работ и часто рассматривается как подсистема САПР. Функциями АСТПП являются разработка технологических процессов, проектирование оснастки, инструмента, специализированного технологического оборудования. АСТПП также может рассматриваться как поп-система САПР. АСУП используется для планирования производства, распределения ресурсов, решения задач материально-технического снабжения. ГПС представляет собой совокупность технологического оборудования и средств обеспечения его функционирования в автоматическом режиме, причем в ГПС должна быть обеспечена возможность автоматизированной переналадки при производстве любых изделий в пределах установленного класса и установленного диапазона их характеристик.  [c.389]


Планирование экспериментов 152 Планировщик заданий 367 Подгра(р 202 Подсистема САПР 47 Предложение техническое 48 Предпроектные исследования 48 Принцип гараитнроваипого результата 23  [c.395]

Ускорение испытаний достигается следующими основными путями (или их сочетаниями) обеспечением непрерывности испытаний повышением частоты нагружений или скорости увеличением нагрузок или исключениепЛ их из спектра нагрузок, не влияющих или слабо влияющих на долговечность форсированием воздействия окружающей среды (загрязнений, коррозии и т.д.) повышением точности измерений использованием статистических методов обработки результатов с использованием исследованных ранее закономерностей применением научного планирования экспериментов.  [c.474]

Другая важная тенденция в развитии САПР обусловлена непрерывным расширением сферы автоматизации в жизненном цикле технических изделий. Этапами жизненного цикла новой техники являются планирование и прогнозирование, научное исследование, проектирование, изготовление опытных образцов, экспериментное исследование и доработка, серийное производство и эксплуатация.  [c.32]

В настоящее время все этапы жизненного цикла доступны автоматизации. Автоматизированные системы планирования являются частью автоматизированных систем управления (АСУ) на различных уровнях предприятие, отрасль и т. п. Разрабатываются и внедряются автоматизированные системы научных исследований (АСНИ) и автоматизированные экспериментальные комплексы (АЭК). Автоматизация технологических процессов производства осуществляется с помощью специальных систем типа АСУ ТП. Все эти автоматизированные системы, включая САПР, работают под управлением или тесно связаны с другими автома-тизирбванными системами типа АСУ, информационных систем н т. п. Тесное органическое взаимодействие указанных систем обеспечивает комплексную автоматизацию всего жизненного цикла новых изделий.  [c.32]

Совместное использование автоматизированных систем для комплексного решения вопросов планирования, проектирования, экспериментального исследования, организации и управления производственными процессами приводит к необходимости создания так называемых интегрированных производственных комплексов <ИПК) или гибких производственных систем (Pn J.  [c.32]

Основные компоненты ЭС база знаний, хранящаяся в соответствии с некоторыми способами представления знаний, информации о предметной области факты, закономерности, эвристические правила, метаправила рабочее поле для хранения описания решаемой задачи и данных для конкретного сеанса работы ЭС диалоговый процесс, обеспечивающий взаимодействие конечного пользователя, а также инженера по знаниям с ЭС на некотором языке-профессиональном, ограниченном естественном, графическом, тактильного взаимодействия и т.д. решать реализующую функцию планирования, поиска решения задачи, вывода логического блок извлечения, пополнения и корректировки знаний блок объяснений(пользователю действий ЭС) Чаще всего ЭС строятся как продукционные системы Сс числом продукций от нескольких десятков до нескольких тысяч). Для организации поиска решения задач используются различные методы, разработанные в исследованиях по искусственному интеллекту. Для получения выводов из неполных, вероятностных, нечетких знаний применяют вероятностные методы (например юпользующуюсяБайеса формулу), нечеткую логику, логики многозначные. Некоторые ЭС способны делать индуктивные выводы, обучаться.  [c.91]

Планирование эксперимента представляет собой новый подход к исследованиям, который позволяет успещно рещать наиболее важные для исследователя вопросы сколько и каких опытов следует провести, как обработать их результаты, чтобы решить поставленную задачу с заранее заданной точностью при минимально возможном числе опытов.  [c.111]

Факторный эксперимент первого пфядка проводится по определенному плану (матрица планирования) при одновременном варьировании всех факторов, представлении математической модели в виде линейного полинома и исследовании его методами математической статистики.  [c.9]

В условиях эксплуатации в отличие от условий эксперимента, при котором получены зависимости, приведенные на рис. 1.2, одновременно могут изменяться нагрузка (контактное давление Р), скорость скольжения V и температура Т. Поэтому для надежного прогноза поведения узла трения в эксплуатации необходимо знать зависимости интенсивности изнапшвания и коэффициента трения от названных внешних факторов. Для получения таких зависимостей проводят многофакторные эксперименты с исггользованием математических методов планирования эксперимента (испытаний материалов ка трение и износ). Такие экспериментальные исследования осуществлялись для исследования свойств материала криолон-3. Был проведен полный факторный эксперимент типа N = S - при количестве варьируемых факторов К = 3  [c.29]


Смотреть страницы где упоминается термин Планирование исследований : [c.147]    [c.196]    [c.801]    [c.429]    [c.349]    [c.173]    [c.17]    [c.137]    [c.128]    [c.2]    [c.8]    [c.132]   
Биометрия (1990) -- [ c.306 ]



ПОИСК



Вопросы планирования исследований

Исследование двух моделей оценки времени как экспериментального фактора при композиционном планирований второго пор ядка

Планирование ТЭА

Статистическое планирование экспериментов при исследовании и оптимизации механических свойств материалов (Ю. М, Должанский)

Т Грехов, Т. А. Левина ПРИМЕНЕНИЕ СТАТИСТИЧЕСКОГО МЕТОДА ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА ДЛЯ ИССЛЕДОВАНИЯ СЕПАРАЦИОННОЙ. СПОСОБНОСТИ ВИХРЕВОГО ЗОЛОУЛОВИТЕЛЯ НА СТЕНДОВОЙ УСТАНОВКЕ



© 2025 Mash-xxl.info Реклама на сайте