Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэрцитивная сила (напряженность)

Коэрцитивная сила — напряженность магнитного поля, необходимая для полного размагничивания предварительно намагниченного ферромагнетика (получения 5 = 0 по предельной петле гистерезиса). Различают Не по индукции и Не по намагниченности Нсм- Их значения различаются существенно только для  [c.7]

Рис. 7.11. Номограммы для контроля по коэрцитивной силе напряжений при одноосном растяжении плоских образцов из конструкционных сталей Рис. 7.11. Номограммы для контроля по коэрцитивной силе напряжений при одноосном <a href="/info/301321">растяжении плоских образцов</a> из конструкционных сталей

Коэрцитивная сила — напряженность поля, которая должна быть приложена к образцу для того, чтобы его размагнитить (измеряется в, эрстедах).  [c.369]

Интенсивностью намагничивания называют магнитную проницаемость коэрцитивной силой — напряженность поля, которая должна быть приложена к образцу для того, чтобы его размагнитить.  [c.163]

Коэрцитивная сила сегнетоэлектрика (нрк. коэрцитивное поле)-—напряженность электрического или магнитного поля или механическое напряжение, необходимая (ое) для переориентации диэлектрических доменов.  [c.105]

Магнитотвердые материалы обладают коэрцитивной силой свыше 7960 а/м (100 э). Если такие материалы имеют к тому же и высокую остаточную намагниченность, то их можно применять для изготовления постоянных магнитов. Постоянные магниты, подобно электромагнитам, используют для получения постоянных магнитных полей значительной напряженности. Постоянные магниты применяют в технике уже в течение нескольких столетий, например, для изготовления магнитных стрелок компасов.  [c.197]

Индукция разомкнутого магнита уменьшается с увеличением зазора. При замкнутом магните За = В г, магнитная энергия равна нулю, так как На = О, если зазор между полюсами велик, то напряженность магнитного поля в зазоре равна коэрцитивной силе материала а fld=0 следовательно, и в этом случае магнитная энергия Wd = 0. При некоторых значениях За и На энергия достигает максимального значения  [c.106]

Мартенситом называют особый вид микроструктуры стали, который получают при быстром ее охлаждении (закалке). Образование мартенсита (200 С), который имеет пластинчатую форму, сопровождается объемными изменениями, созданием больших внутренних напряжений, что приводит к появлению большой коэрцитивной силы. В настоящее время используются только легированные мартенситные стали, которые называются по легирующей добавке хромовые (до 3 % Сг), вольфрамовые (до 8 % W) и кобальтовые (до 15 % Со). Значение 11 , пах Для мартенситных сталей низкое и лежит в пределах 1 —4 кДж/м кроме того, они имеют склонность к старению. В настоящее время эти материалы имеют ограниченное применение и используются для изготовления магнитов только в наименее ответственных случаях.  [c.110]

Наклеп. Значительное влияние на магнитные свойства оказывают механические остаточные напряжения наклепа (штамповка, протяжка, вальцовка и т. п.). Процессы смещения границ, т. е. процессы, намагничивания, могут затрудняться вследствие наличия в зернах металла сжатых или растянутых областей. Так, при удлинении образца технически чистого железа на 3% его магнитная проницаемость составит всего лишь 25% от первоначальной, а коэрцитивная сила возрастает примерно вдвое. Для устранения напряжений материал отжигают.  [c.233]


Напряженность поля старта Hq — представляет собой минимальное значение напряженности поля, необходимого для перехода из одного состояния в другое, например, от — В к +-бл- Величина Яд несколько больше коэрцитивной силы Яо = (1,2 -ь 1,4) Яс. Время переключения т — это время, необходимое для указанного перехода, например, от — В до + В . Время, т может- составлять величину от долей до нескольких микросекунд. Если откладывать 1 /т в функции напряженности поля Я, то получается зависимость, близкая к прямой. Продолжая эту прямую до пересечения с осью абсцисс, получают значение поля старта Яо (рис. 19.1, б). Коэффициент переключения 5ф равен произведению 5ф = т (Я,,,—Яц). Если значения напряженности поля измерять в aju, а т — в мксек, то коэффициент переключения будет выражаться в мка-сек[м или в микрокулонах на метр.  [c.256]

В зависимости от конкретных задач неразрушающего контроля (НК), марки контролируемого материала, требуемой производительности метода могут использоваться те или иные первичные информативные параметры. К числу наиболее распространенных относятся следующие информативные параметры коэрцитивная сила, намагниченность, индукция (остаточная индукция), магнитная проницаемость, напряженность, эффект Баркгаузена.  [c.6]

Сталь 1 Термическая обработка Коэрцитивная сила Н ., А/м Остаточная индукция В , Тл Напряженность, необходимая для ПО лучения В , А/м  [c.38]

В мартенсите углерод внедрен в решетку железа, искажая которую (создавая сильные внутренние напряжения), он увеличивает магнитную жесткость основы, вызывая рост коэрцитивной силы и уменьшение магнитной проницаемости. Чем больше содержание углерода,- тем выше коэрцитивная сила сплава. Но в различных структурных составляющих углерод с разной интенсивностью увеличивает коэрцитивную силу сплава в меньшей степени, когда он внедрен в форме графита, сильнее в перлите и наиболее сильно в цементите.  [c.67]

Гистерезис. При перемагничивании ферромагнитных тел величина магнитной индукции зависит не только от напряженности магнитного поля, но н от предшествующего магнитного состояния. Вид кривой цикла перемагничивания, называемой петлей гистерезиса, приведен на фиг. 13. Od — остаточный магнетизм — магиитная индукция при Я = 0 Ое — коэрцитивная сила — напряженность магнитного поля, необходимая для полного размагничивания.  [c.453]

Обозначения Тс — точка Кюри Не — коэрцитивная сила — остаточная индукция /(пр — коэффициент пря-моугольности ТКИ,. — температурный коэффициент коэрцитивной силы — напряженность порогового поля Sw — константа переключения р — удельное электросопротивление  [c.596]

Коэрцитивная силаЯ — напряженность размагничивающего поля, которое должно быть приложено к предварительно намагниченному образцу, для того чтобы магнитная индукция в нем стала равной нулю. Иногда величину Я называют коэрцитивной силой по магнитной индукции и обозначают вЯ,.  [c.282]

Контур колебательный 149 Коэрцитивная сила (напряженность) 139 Коэффипиент внутреннего трения 45  [c.204]

Напряжения в решетке, вызванные наклепом или фазовыми превращениями, измельчение зерна и другие отклонения от равновесного состояния вызывают повышение коэрцитивной силы. Это значит, что изменения в строении, вызывающие повы-иление механической твердости, повышают и магнитную твердость (коэрцитивную силу). Этим оправдывается применение терминов магнитная твердость или мягкость.  [c.542]

Применяют также сплавы N —А1 с добавками кремния (I—2%). Такие сплавы обладают очень высокой коэрцитивной силой (до 640 Э) при умеренной индукции (400—500 Гс) и пониженной критической скоростью охлаждения, что очень существенно при изготовлении массивных магнитов. Добавка меди к сплавам Fe—Ni—Л1 позволяет частично заменить дорогой никель и улучшить свойства сплава. Введение в сплав с 22% Ni до 6% Си повышает Не без снижения Вг. Наиболее высокие магнитные свойства достигаются при одновременном введении меди и кобальта. Последний повышает коэрцитивную силу и остаточную индукцию. Особое внимание следует уделить высококобальтовым сплавам (15—24% Со), которые подвергаются так называемой закалке в. иагнитном поле. Сущность этой закалки заключается в том, что нагретый до температуры закалки (около 1300°С) магнит быстро помещают между полюсами электромагнита (напряженность поля должна быть НС менее 120 ООО А/м) и так охлаждают до температуры ниже 500°С. Дальнейшее охлаждение проводят обычно па воздухе. После такой обработки магнит обладает резкой анизотропией магнитных свойств. Магнитные свойства очень высоки только в том направлении, в котором действовало внешнее магнитное поле в процессе закалки.  [c.546]


Удельная электрическая проводимость, магнитная проницаемость, коэрцитивная сила, остаточная индукпдя, твердость, влажность, напряжение, структура, химический состав, предел прочности, предел текучести, относительное удлинение, плотность и другие.  [c.177]

Из рис. 8.13 видно, что при определенном значении напряженности поля Е поляризация достигает насыщения Ps- Если после достих<ения насыщения напряженность поля уменьшить до нуля, то сохраняется поляризация Pr, называемая остаточной. Для того чтобы эту поляризацию свести к нулю, необходимо прилол<ить внешнее поле обратного направления. Напряженность этого поля Ес называют коэрцитивной силой. Остаточная поляризация и коэрцитивная сила зависят как от природы материала, так и от факторов, влияющих на движение доменных стенок — размеров кристаллитов, примесей, дефектов.  [c.300]

Магнитомягкие материалы. Магнитные материалы, которые намагничиваются до насыщения [i перемагни-чиваются в относительно слабых магнитных иоля.ч напряженностью //- 10h-10 А/м, относятся к магннтомяг-ким. Для этих материалов характерны высокие значения относительной магнитной проницаемости — начальной Цгнач= 102- -10 и максимальной Ц тац— lO s-Ю ". Коэрцитивная сила Не магнитомягких материалов составляет обычно от 1 до 10 А/м, а потери на магнитный гистерезис очень малы— 1 — 10 Дж/м на один цикл перемагничивания. Для многих материалов в качестве справочной характеристики приводят удельные потери, т. е, мощность потерь Р, на частотах перемагничиваю-щего ноля 50 или 400 Гц при различных значениях амплитуды индукции (например, Pi,o/so — мощность потерь на частоте 50 Гц при индукции, равной 1,0 Тл).  [c.615]

Магнитострнкционные материалы. Основными характеристиками магнитострикционных материалов (см. табл. 27.32), применяющихся для изготовления магнитострикционных преобразователен, являются коэффициент магнитомеханической связи К, квадрат которого равен отношению преобразованной энергии (механической или магнитной) к подводимой (соответственно магнитной или механической), динамическая маг-гщтострикционная постоянная a=(da/dS)s и маг-ьитострикционная постоянная чувствительности Л= ((ЗВ/а)где а — механическое напряжение, Я/м , В — магнитная индукция, Тл, а индексы и Я означают неизменность деформации и магнитного поля. Величина а существенна для работы излучателей, а Л — для работы приемников. Плотность р и модуль Юнга Е определяют резонансную частоту преобразователей от механической прочности, магнитострикции насыщения X и индукции насыщения Вь зависит предельная интенсивность магнитострикционных излучателей механическая добротность Q, удельное электрическое сопротивление р.-,л и коэрцитивная сила Не определяют потери энергии на вихревые токи и гистерезис при работе преобразователя. Значения К, а, Л существенно зависят от напряженности подмагничивающего поля, значение которого Яопт, отвечающее максимуму К, обычно называют оптимальным.  [c.615]

Магнитотвердые материалы. К магнитотвердым относятся материалы, которые намагничиваются до насыщения и перемагничиваются в сравнительно сильных магнитных полях напряженностью /У 10 - 10 А/м. Магнитотвердые материалы характеризуются высокими значениями коэрцитивной силы Не, остаточной индукции В, и максимальной плотности магнитной энергии ВН) тал на участке В., — Нсв размагничивания петли гистерезиса (рис. 27.1).  [c.615]

Коэрцитивная сила увеличивается с измельчением зеренной и блочной структур металла. Это объясняется тем, что в мелкозеренном материале на единицу объема приходится больше доменов. Вероятность наличия примесей и напряжений вдоль границ зерен и блоков мозаики также увеличивается, что делает материал более магнитнотвердым. Магнитномягкие материалы применяют при изготовлении сердечников трансформаторов и реле, электромагнитов и т. п. Магнитная анизотропия влияет на  [c.64]

Механизм упрочнения при старении сплавов различных систем состоит в том, что зоны предвыделений и образующиеся дисперсные частицы, имея по сравнению с матрицей различные упругие свойства, создают поля напряжений, взаимодействующие с дислокациями. В результате движение дислокаций через кристалл затормаживается и деформация сплава затрудняется с другой стороны, дисперсные частицы оказывают также сопротивление переползанию дислокаций (см. рис. 58). Например, у магнитотвердых сплавов структура, возникающая на различных стадиях старения в системе Fe—Ni—Al, способствует увеличению коэрцитивной силы, поскольку зоны предвыделений и области дисперсных выделений, будучи соразмерными с величиной доменов, задерживают переориентацию стенки Блоха в процессе перемагничи-вания сплава. Эффект старения наблюдают и используют не только в системах цветных сплавов (на основе алюминия, магния, титана, никеля), но и в сплавах на основе железа и, в частности, у стали, содержащей  [c.112]

Общие требования, предъявляемые к магнитомягким материалам — это высокие значения магнитной проницаемости и индукции по возможности, малые потери на гистерезис, токи Фуко и низкая коэрцитивная сила. Для получения таких свойств ферромагнитный материал должен иметь гомогенную структуру (чистый металл или твердый раствор) с возможно низким содержанием включений и примесей, Материал должен иметь рекристаллизован-ную структуру, Т. е. минимальные внутренние напряжения. По своим свойствам и назначению материалы этого класса сплавов могут существенно различаться, например, для изготовления реле и трансформаторов применяют электротехническое железо, динамную и трансформаторную сталь для изготовления трансформаторов тока используют сплавы пермаллойной группы. К этому классу материалов относятся также сплавы перминварной группы и сплавы с высокой намагниченностью насыщения. Магнитомягкие ферромагнитные материалы в приборостроении классифицируются по свойствам и применению следующим образом  [c.130]


С учетом только влияния анизотропии формы или магнитокристаллической энергии или напряжений коэрцитивная сила может быть рассчитана по формулам  [c.205]

Значение индукции насыщения определяется в поле Я,, которое принимается равным 5Н . Кривая изменения индукции при изменении напряженности внешнего магнитного поля от +Я до —Я и обратно называется предельной петлей гистерезиса, которая является важной характеристикой материала, на ее основе можно определить основные параметр1 1 материала — коэрцитивную силу Яд. индукцию насыщения остаточную индукцию Sr и др.  [c.90]

Искажения решетки. Существенное влияние на магнитные свойства оказывают искажения строения решетки. Нарушение правильности строения ферромагнитных кристаллов, в первую очередь, происходит из-за примесей. Коэрцитивная сила в железе увёличивается при введении углерода, хрома, вольфрама и кобальта, отрицательное влияние оказывают растворенные в железе азот, кислород и водород,-Искажения решетки вызываются также внутренними напряжениями они могут возникнуть при термической обработке, при выделении из зерен дисперсных частиц химических соединений и т. п.  [c.233]

Ферромагнитные материалы с широкой петлей гистерезиса ( 17.1), именуемые магнитнотвердыми, обладают весьма большой коэрцитивной силой, что связано с их структурными особенностями. При рассмотрении условий намагничивания отмечалось, что ряд факторов — наличие внутренних напряжений, искажений решетки и включений препятствует смещению границ между доменами, что сказывается в появлении высокой коэрцитивной силы. Однако исключительно высокие значения Яс, получаемые для некоторых сплавов, уже нельзя объяснить влиянием указанных факторов. Для сплавов с коэрцитивной силой свыше 40 ООО ajM допускают возможность образования в процессе охлаждения изолированных намагниченных частиц — доменов, расположенных среди слабомагнитной фазы процессы смещения в таких материалах затруднены и их перемагничи-вание возможно только с помощью процесса вращения. Исследования показывают, что достаточно небольшого количества изолированных намагниченных частиц, чтобы материал имел весьма высокую коэрцитивную силу. В некоторых сплавах этого типа охлаждение ведется в магнитном поле, магнитные моменты в изолированных доменах оказываются ориентированными по направлениям, близким к направлению магнитного поля. Получены сплавы не только с магнитной, но и с кристаллической текстурой.  [c.261]

Магнитнотвердые стали этой группы охватывают в основном хромистые, вольфрамовые и кобальтовые стали, которые приобретают повышенную коэрцитивную силу после закаливания на мартенсит. Помимо мартенсита после термообработки эти стали содержат. высокодисперсные карбиды. Наличие больших внутренних напряжений в основном предопределяет более высокую коэрцитивную силу, чем в обычных сталях. Хромистые стали отличаются от углеродистой стали присадкой хрома (до 3%) вольфрамовые н кобальтовые стали помимо хрома содержат соответственно присадки вольфрама (до 8%) и кобальта (до 15%). Введение вольфрама сопровождается повышением В , а кобальта — увеличением и В/, одновременно возрастает и (ВН)тах- Наиболее высокие для этих сталей магнитные свойства получаются в результате сложной термообработки, которая осуществляется после изготовления магнитов. Однако в магнитах из этих сталей наблюдается некоторое снижение остаточной индукции с течением времени. Для повышения стабильности применяют искусственное остарнвание выдерживанием. в кипящей воде и частичным размагничиванием готовых магнитов. Все стали допускают ковку в нагретом состоянии и холодную обработку ДО закалки..Магнитные характеристики относительно невысоки так, для хромистой стали с содержанием около 3% Сг и 1% С (остальное Fe) значения В, = 0,95 тЛ, — 4,8 ка1м-,- (ВН)тгх не менее 1,1 Kdot jM (табл. 20.1). Мартенситные стали могут применяться  [c.263]


Смотреть страницы где упоминается термин Коэрцитивная сила (напряженность) : [c.5]    [c.335]    [c.919]    [c.307]    [c.291]    [c.77]    [c.134]    [c.205]    [c.212]    [c.90]    [c.158]    [c.256]    [c.260]    [c.265]    [c.268]    [c.270]   
Справочник по элементарной физике (1960) -- [ c.139 ]



ПОИСК



Коэрцитивная сила

Напряженно

Напряженность



© 2025 Mash-xxl.info Реклама на сайте