Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Углеводороды, углерод

Элементы этих углеводородов (углерод и водород) связаны между собой силами главных валентностей, но их физическое состояние обусловлено силами побочных валентностей, действующими между их молекулами.  [c.26]

Органическую часть топлива составляют следующие химические элементы углерод (С) водород (Нг) кислород (О ) азот (N2) и сера (3). Топливо может состоять из смеси всех этих элементов или части их. Так, органическую массу кокса и древесного угля в основном составляет углерод нефти и продуктов ее переработки, а также газообразных углеводородов — углерод и водород различных видов природных твердых топлив — углерод, водород н кислород.  [c.159]


Науглероживание никеля осуществляется [Л. 32] путем образования зеленой окиси нагреванием никеля на воздухе примерно до 925° С с последующей почти немедленной обработкой в другой печи при той же температуре в атмосфере углеводородов. Окись никеля может служить при этом катализатором и вызывает разложение газа на его составляющие углерод и водород. Водород восстанавливает окись, а образующаяся вода и избыток водорода уносятся с избытком углеводородов. Углерод при этом осаждается на активной никелевой поверхности. Окисление и восстановление никелевой поверхности сами по себе приводят  [c.244]

Углеводороды, углерод 231, 236 Угол атаки 37, 257, 280, 333  [c.493]

В табл. 36 приведены основные свойства углеводородов, углерода,, водорода, а также некоторых смесей топлив с окислителями. Теплотворность, теоретическая скорость истечения по уравнению (350) и удельная тяга отнесены к состоянию топлива при 25° С при сжигании в газообразном кислороде с той же температурой. При использовании сжиженных газов теплотворность уменьшается в связи с затратами тепла на испарение и подогрев пара до температуры 25° С. Для авиационного бензина приведены различные окислители, чтобы можно было проводить сравнения.  [c.271]

В 1975 г. выход мазута в СССР составил около 45 % количества сырой нефти. В начале 80-х годов глубина переработки нефти возросла примерно до 60 %, а к концу века выход мазута уменьшится до 20 % сырой нефти. Поскольку мазут служит и предметом экспорта, его потребление в качестве топлива уменьшается. Мазут, как и моторные топлива, представляет собой сложную смесь углеводородов, в состав которых входят в основном углерод (С = = 844-86 %) и водород (Н =10 12%),  [c.121]

Двигатели внутреннего сгорания сегодня являются основными загрязнителями воздушного бассейна. В ФРГ, например, автомобильный транспорт, потребляя 12 % общего расхода топлива в стране, дает 50 % общего количества вредных выбросов. Особенно плохо, что основная масса выхлопных газов от автомобилей выбрасывается в местах с высокой концентрацией людей (городах), причем на уровне роста человека (особенно детей), где газы не рассеиваются на большие расстояния, В выхлопных газах две содержатся твердый углерод (сажа), который является адсорбентом токсичных, в том числе канцерогенных веществ, оксиды азота NO<, углеводороды С Н , оксид углерода СО и альдегиды, а при работе на этилированном бензине — и крайне токсичные соединения свинца. Содержание указанных соединений в выхлопных газах зависит от типа двигателя, его состояния и регулировки, режима работы, применяемого топлива и др. Например, содержание NOx в отработавших газах дизелей и карбюраторных двигателей практически одинаково (до 2,5 г/м ), в то время как выброс СО в карбюраторных двигателях (до  [c.183]


Сажа, углеводороды, оксид углерода и альдегиды образуются в результате неполного сгорания топлива, связанного либо с недостатком кислорода в рабочей смеси, либо с плохим смесеобразованием. Первое особенно характерно для бензиновых двигателей, когда карбюратор вырабатывает богатую смесь на режимах холостого хода и торможения. Дизели всегда работают со значительным избытком воздуха, поэтому выброс СО у них невелик, зато в отработавших газах много углеводородов, и особенно сажи, обусловливающих дымность газов.  [c.183]

Например, вращение одной метильной группы по отношению к остальной части молекулы углеводорода (в частности, этана) вокруг связи углерод — углерод характеризуется числом симметрии, равным трем.  [c.118]

Цементирующими газами являются окись углерода и газообразные углеводороды. Разложение этих соединений приводит к образованию активного атомарного углерода  [c.324]

Как видно, состав ОГ рассматриваемых типов двигателей существенно различается прежде всего по концентрации продуктов неполного сгорания, а именно окиси углерода, углеводородов п сажи.  [c.6]

Окиси углерода (СО) Окислов а.тота ( Ч)ч) Углеводородов (С Н, )  [c.14]

Распределение концентраций углеводородов не так закономерно, как окиси углерода. В значительной степени образование С Н определяется параметрами системы зажигания, фазами газораспределения, качеством распыливания топлива. В зонах работы двигателя с обогащенным составом смеси так же, как и СО, наблюдается увеличение концентраций углеводородов.  [c.17]

Нормируемыми компонентами ОГ автомобильных двигателей являются окись углерода, окислы азота и углеводороды, как обладающие наибольшей токсичностью.  [c.20]

В ПИД-анализаторах используется эффект изменения электрической проводимости водородного пламени при добавлении углеводородов (рис. 8). Пламя химически чистого водорода практически неэлектропроводно. При наличии углеводородов температура пламени становится достаточной для ионизации и увеличения его электрической проводимости, которая пропорциональна количеству введенных атомов углерода С. Таким образом, структура молекул уг-  [c.21]

Приборные методы контроля содержания окиси углерода достаточно хороню отлажены и широко применяются в практике работы АТП. Нормирование выбросов в эксплуатации других токсичных компонентов, в первую очередь углеводородов, сдерживается недостаточным развитием простых, надежных и в то же время обеспечивающих приемлемую точность газоанализаторов.  [c.32]

В ведущих зарубежных странах, например в США и Японии, в области нормирования выбросов приняты наиболее жесткие стандарты на токсичность автомобилей и двигателей. Большинство других стран с учетом своей специфики автомобилестроения и эксплуатации используют опыт США. Первое законодательное ограничение токсичности автомобилей распространялось на легковые автомобили в штате Калифорния, где загрязнение атмосферы достигло опасных пределов, а затем его действие было распространено и на все остальные штаты. Стандартами регламентировалось содержание окиси углерода и углеводородов в ОГ, устанавливались предельные значения топливных испарений.  [c.33]

Выброс вредных веществ автомобильными дизелями регламентирован ОСТ 37.001.234-81, согласно которому удельные выбросы не должны превышать окиси углерода — 9,5, углеводородов —  [c.35]

У серийно выпускаемых двигателей возможны отклонения в выходных показателях из-за несовершенства технологии изготовления узлов и систем, влияющих на процессы сгорания. Выполнение повышенных требований к топливной экономичности и токсичности двигателей возможно прежде всего при ужесточении технологических допусков на изготовление деталей и сборку узлов топливоподающей системы, системы зажигания, механизма газораспределения, деталей, формирующих камеру сгорания, систему выпуска. Испытания автомобилей, изготовленных до введения жесткого нормирования выбросов показали, что разброс величин выбросов по окиси углерода и углеводородам одним автомобилем, но с различными карбюраторами достигал двух-трехкратной величины, а данных по расходу топлива — 15. .. 20%.  [c.37]

В системе выпуска двигателей происходят реакции окисления окиси углерода и углеводородов ОГ с избыточным кислородом. Эти процессы при относительно невысоких для реакций в газовой среде температурах (300. .. 800 С) проходят с малой скоростью. Для ускорения протекающих реакций используют катализаторы. Механизм действия катализатора сложен. В основе окислительных процессов, протекающих на катализаторах, лежат процессы диссоциативной адсорбции кислорода и продуктов неполного сгорания, вследствие чего скорость их химического взаимодействия резко возрастает.  [c.64]


Занятие 1. Актуальность проблемы. Состав ОГ, причины образования токсичных компонентов. Принципы измерения содержания токсичных компонентов ОГ. Нормирование содержания вредных веществ, методы измерения концентраций окиси углерода, двуокиси углерода, углеводородов. Содержание ГОСТ 17.2.2.03—77. Картерные газы. Особенности конструкции топливной аппаратуры автомобилей, имеющихся на АТП.  [c.113]

Суть получения покрытия из газовой фазы заключается в том, что в результате гетерогенных химических реакций в среде газов, окружающей покрываемое изделие, на него выпадают составляющие покрытия, формируя сплошной слой осаждаемого материала. Исходными продуктами для осаждения служат газообразные галогениды, карбонилы или металлоорганические соединения, при разложении и при взаимодействии которых с дру. ими газообразными составляющими смесей (водородом, аммиаком, углеводородами, окисью углерода и др.) на покрываемой поверхности образуются нужные материалы.  [c.108]

Близок к методу газофазного осаждения широко используемый в производстве электровакуумных приборов метод чернения [45], служащий для увеличения излучательной способности поверхности из металлической фольги. Способ позволяет разложить углеводороды таким образом, что выделяющийся при этс-м углерод покрывает металлическую поверхность.  [c.110]

Однако для этой дели может быть использован также разностный метод отдельно измеряется рассеяние на каком-нибудь углеводороде , например на полиэтилене, парафине и пр., и рассеяние на углероде.  [c.521]

В состав углеводорода входят группы СНз, т. е. атомы углерода и водорода в соотношении 1 2.  [c.521]

Природный газ содержит 90—98 % углеводородов (СН4 и СаНо) и 1 % азота. Мазут содержит 84—88 % углерода, 10—12 % водорода, небольшое количество серы и кислорода. Кроме того, it -пользуют доменный или колошьгпковыи газ, побочный продукт доменного процесса.  [c.21]

Элементарный состав автомобильных нефтяных топлив — это углерод, водород, в незначительных количествах кислород, азот и сера. Атмосферный воздух, явл яющийся окислителем топлив, состоит, как известно, в основном из азота (79%) и кислорода (около 21%). При идеальном сгорании стехиометрической смеси углеводородного топлива с воздухом в продуктах сгорания должны присутствовать лишь N-2, СО2, Н.2О. В реальных условиях ОГ содержат также продукты неполного сгорания (окись углерода, углеводороды, альдегиды, твердые частицы углерода, перекисные соединения, водород и избыточный кислород), продукты термических реакций взаимодействия азота с кислородом (окислы азота), а также неорганические соединения тех или иных веществ, присутствующих в топливе (сернистый ангидрид, соединения свинца и т. д.).  [c.5]

Всего в ОГ обнаружено около 280 компонентов. По своим химическим свойствам, характеру воздействия на организм человека вещества, содержащиеся в отработавших и картерных газах, подразделяются на несколько групп. В группу нетоксичных веществ входят азот, кислород, водород, водяной пар, а также углекислый газ. Группу токсичных веществ составляют окись углерода СО, окислы азота N0 , многочисленная группа углеводородов С Н 1, включающая парафины, олефины, ароматики и др. Далее следуют альдегиды Я СНО, сажа. При сгорании сернистых топлив образуются неорганические газы - сернистый ангидрид ЗОз и сероводород НзЗ.  [c.5]

Основные токсичные вещества, являющиеся продуктами неполного сгорания топлива — окись углерода, сажа, углеводороды и альдегиды. У двигателей с внешним смесеобразованием, и частности бензиновых двигателя.х, наибольшая доля вредных выбросов приходится на окись углерода, в то время как у двигателей с внутренним смесеобразованием (дизелей) — на сажу. Это объясняется существенным различием организации процессов смесеобразования и сгорания. Если у двигателя с внешним с.месеобразованием процесс горения в цилиндре можно рассматривать как горение гомогенной смеси, то в цилиндрах. тизеля осуществляется гетерогенное сгорание, качества которого зависит от характеристик впрыска топлива, формы камеры сгорания, интенсивности смесеобразования и т. д. При организации малотоксичного рабочего процесса в дизеле необходимо обеспечить полное сгорание топлива по всему объему ка.меры сюрания, а у двигате.теп с внешним смесеобразованием оптимальное соотношение топлива и воздуха в смеси.  [c.10]

Исследования, проведенные венгерскими специалистами 1361, показали, что уменьшение максимальной цикловой подачи путем изменения характеристик корректора хода рейки ТНВД на автобусе Икарус-280 позволяет исключить работу двигателя на режимах с наибольшей дымностью (рис. 30). При этом на режимах трогания с места автобуса дымность снижается на 40—45%. В условиях городского движения на 10 — 11% снижается также расход топлива, выбросы окиси углерода и углеводородов. Выбросы окислов азота практически неизменны. Запас мощности двигателя достаточен для сохранения среднетехнической скорости движения автобуса на маршруте. ,  [c.50]

Как возможные топлива для двигателей представляют определенный интерес аминные топлива — аммиак ЫНз и гидразин ЫзН4. При их сгорании в ОГ отсутствуют углеводороды, окись углерода, углекислый газ, но выбросы окислов азота остаются на высоком уровне, что объясняется образованием N0 из азота, содержащегося в аминном топливе. Аммиак хранится в жидком состоянии при давлении до 10 атм, плотность его 0,7 г/см .. Аммиак отличается малой скоростью горения (распространения пламени) и узким пределом горения.  [c.54]

При установке СНОГ уровень внутреннего и внешнего шума нового автомобиля увеличивается в среднем на 1,5 дБа, не превышая нормы стандартов. Описанная система нейтрализации с небольшими изменениями применима на микроавтобусе РАФ. Эффективность очистки ОГ по окиси углерода и углеводородом для СНОГ с нагнетателем достигает соответственно 85 и 80% при испытаниях по ездовому циклу, для СНОГ с пульсарами — 73 и 61%. Для двигателей с настроенной системой выпуска эффективность СНОГ с подачей воздуха пульсарами увеличивается соответственно до 85 и 78% за счет повышения пиков разрежения во впускном трубопроводе.  [c.70]


Концентрации продуктов неполного сгорания топлива — окиси углерода, углеводородов, альдегидов в ОГ дизелей в 5. .. 10 раз ниже, чем у бензиновых двигателей. Но расход ОГ дизелей выше., чем бензиновых двигателей той же мощности вследствие более вы-еокой степени наполнения цилиндров. Поэтому массовый выброс вредных веществ дизелей сопоставим с выбросами бензиновых двигателей.  [c.73]

Все неисправности и наруптения регулировок по их влиянию на токсичность автомобиля можно разделить на две основные группы непосредственно влияющие на процесс сгорания в двигателе и требующие увеличения подачи топлива. К первой группе относятся регулировки системы холостого хода и главной дозирующей системы, влияющие на коэффициент избытка воздуха, образование СО, С,1Н, , NOx и расход топлива. Характерными для второй группы являются неисправности, вызывающие нарушения процесса сгорания. Например, при возникновении перебоев в воспламенении в одном из цилиндров в 6. .. 8 раз возрастут выбросы углеводородов, однако остальные цилиндры будут работать при большем открытии дроссельной заслонки, смесь будет сгорать более эффективно, с меньшим выбросом СО на режимах холостого хода и малых нагрузок, доля которых в ездовом цикле велика. Этот факт свидетельствует также о необходимости при контроле технического состояния двигателей по токсичности определять концентрации не только окиси углерода, но и углеводородов.  [c.84]

Определение структурно-групнового состава 50-градусных керосино-газойлевых и масляных фракций, выкипающих выше 200° С, по методу, предложенному Ван-Несом и Ван-Вестеном [13]. При помощи этого метода устанавливается содержание среднего числа колец в молекуле (Ко), среднее число колец, приходящееся на ароматические и нафтеновые структуры Кл н /<н), а также процентное содержание углерода, приходящегося на ароматические и нафтеновые структуры, на метановые углеводороды и цепи.  [c.17]

По структурно-групповому составу метано-нафтеновые углсво-лл>роды, выделенные из фракций туймазинской нефти, также резко отличаются от углеводородов, выделенных из фракций молдавской нефти. Количество углерода, приходящегося на нафтеновые кольца, значительно меньше в метано-нафтеновых углеводородах, выделенных из фракций туймазинской нефти, нрнче.м содержание его несколько возрастает при переходе от низкокипяпшх фракций к высококипящим (С = 20% во фракции 200—250" С и Си—32% во фракции 450—500°С). В соответствующих фракциях молдавской нефти содержание углерода, приходящегося на нафтеновые кольца, значительно выше, причем оно уменьшается при повышении температурных пределов кипения фракций (Сн =85 /о и Сн = 53% соответственно),  [c.156]

Углеводороды, образующие комплекс с карбамидом, выделен-з1е при трех последовательных обработках фракций, выкипающих -> 400° С, ромашкинской и бондюжской нефтей, состоят из мета-)вых углеводородов, что подтверждается структурно-групповым )ставом. Результаты анализа показывают, что в них отсутствуют )льцевые структуры и, кроме того, количество атомов углерода, )Иходящееся на метановые углеводороды и парафиновые цепи, )ставляет 100% (табл. 116).  [c.185]

Дизельные фракции характеризуются высоким содержанием парафиновых структур (на парафиновые углеводороды и цепи приходится 57—84% углерода) и невысокой цикличностью углеводородов (среднее число колец в молекуле Ко == 0,42 -1,48). Поэтому получаемые дизельные топлива имеют высокие цегяновые числа (от 52 до 65). По температурам застывания они отвечают лишь летним сортам дизельных топлив.  [c.390]

Углеводородный и структурно-групповой состав фракций, bi>ikh-пающнх выше 350°С, характеризует нефти Ферганской долины как благоприятное сырье для получения масел. Содержание углерода, прихоляшегося на парафиновые углеводороды и цепи (Си) в масляных фракциях основных нефтей Ферганской долины, довольно высокое (от 63 до 74%). Среднее число колеи в молекуле (Ко), наоборот, невысокое и колеблется от 0,55 до 2,30. Вследствие этого индустриальные масла и их компоненты, полученные из дистиллятных фракций, имеют высокие индексы вязкости (81—98).  [c.390]


Смотреть страницы где упоминается термин Углеводороды, углерод : [c.56]    [c.121]    [c.32]    [c.38]    [c.64]    [c.67]    [c.185]    [c.185]    [c.129]    [c.312]    [c.224]    [c.382]   
Основы техники ракетного полета (1979) -- [ c.231 , c.236 ]



ПОИСК



Углеводороды 101 —

Углерод

Углерод пиролитический влияние добавок к углеводородам на структуру

Углерод— углерод



© 2025 Mash-xxl.info Реклама на сайте