Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрицы длительная прочность

Матрицы длительная прочность 281, 284  [c.478]

Таблица 3.46. Длительная прочность сплавов на основе тугоплавких металлов и композиционных материалов на никелевой матрице [3,14,24] Таблица 3.46. <a href="/info/57796">Длительная прочность сплавов</a> на основе <a href="/info/1609">тугоплавких металлов</a> и композиционных материалов на никелевой матрице [3,14,24]

Рис. 3.20. Пределы длительной прочности композиционных материалов па полимерной матрице [13] при растяжении --) и изгибе (---) Рис. 3.20. <a href="/info/7027">Пределы длительной прочности</a> композиционных материалов па полимерной матрице [13] при растяжении --) и изгибе (---)
КОМПОЗИТОВ, армированных сапфиром композиты с волокнами пониженной прочности (140 кГ/мм2) будут иметь такую же прочность при высоких температурах (>1373 К), какую имеют композиты, содержащие волокна с исходно высокой прочностью. Это означает, что в том случае, когда применение композитов определяется высокотемпературной и длительной прочностью (например, в качестве материалов для горячих частей газотурбинного двигателя), нецелесообразно при разработке композитов направлять усилия на усовершенствование процесса изготовления с целью повышения прочностных свойств имеющихся волокон выше того уровня, который имеется в композитах с Ni — Сг-матрицей (см. обсуждение выше).  [c.344]

Предварительные исследования по совместимости показали, что между волокном и матрицей в тугоплавких армированных волокнами жаропрочных сплавах возникают реакции легирования [50]. Также показано, что если реакции легирования возникают между матрицей и волокном, то свойства композита улучшаются. В результате был осуществлен ряд исследований для подбора пар материалов волокно — матрица, наиболее совместимых друг с другом. В [51] исследованы свойства длительной прочности при повышенных температурах (1093 и 1204 °С) для четырех проволок Т7М (молибден, 0,5% Т1, 0,08% 2г, 0,015% С) ЗВ (вольфрам, 3% рения) КР (вольфрам, 1% тория) и 21808 (промышленный вольфрам). Обнаружено, что проволоки 21808 и ЗВ были более совместимы с исследованными никелевыми сплавами, чем проволоки NF или Т2М. Овойства длительной прочности проволок в отсутствие материала матрицы были такие- же.  [c.277]

Свойства бериллия также исследовались для определения возможностей его использования в качестве волокнистого армирующего материала для композитов с полимерной матрицей, если он сам имелся в достаточном количестве в форме пластичной проволоки. Высокий модуль (на 40% больше, чем у стали) и низкая плотность (на 30% меньше, чем у алюминия) сделали его привлекательным конструкционным материалом для авиации, и можно было надеяться, что пластичность проволок улучшит ударные свойства композита. В работе [62] опубликованы некоторые результаты по растяжению бериллиевой проволоки диаметром 0,005 дюйм. Она разрушалась вязко даже при комнатной температуре после удлинения примерно на 1—3%. Позднее [36] исследован более детально предел упругости проволоки и определено ее остаточное удлинение при различных уровнях нагружения. Кроме того, исследованы также свойства длительной прочности проволоки при комнатной температуре. Данные показывают уменьшение прочности с ростом продолжительности действия нагрузки, однако результаты имеют большой разброс.  [c.278]


Как правило, прочность и жесткость большинства материалов матрицы гораздо ниже, чем армирующих волокон модуль при растяжении матриц много меньше модуля волокон, а деформация разрушения матрицы обычно больше. Следовательно, когда разрушающая нагрузка прикладывается в направлении армирования к композиту с непрерывными волокнами, можно ожидать, что если все они имеют одну и ту же длину, то разрушение композита определится длительной прочностью волокон. Действительно, в разделе по исследованию длительной прочности ком-  [c.279]

Последняя группа матриц, о которой здесь упомянем, это группа сплавов на никелевой основе, используемая в качестве материалов матрицы для высокотемпературных приложений. Сплавы на никелевой основе использовались в последние 20 лет в конструкциях, работающих при высоких температурах, например в лопатках роторов газовых турбин. Для получения существенного увеличения прочности они армировались вольфрамовыми волокнами. Высокая плотность композита ограничивает полезную объемную долю волокон примерно до 25%, поэтому необходима высокопрочная матрица. В этом случае матрица дает значительный вклад в общую характеристику композита и, в частности, в его длительную прочность.  [c.284]

Х, Длительная прочность композитов А. Композиты с полимерной матрицей  [c.285]

После описания некоторых временных свойств составляюш их материалов самое время исследовать временные свойства и самих композитов. В отличие от некоторых механических свойств волокнистых композитов, которые могут быть определены по правилу смесей , определение длительной прочности вообще гораздо сложнее. В особенности это проявляется, если рассматривать хрупкие волокна, которые в окружении вязкоупругой матрицы обладают различными значениями прочности. Такая комбинация волокно — матрица может привести к замедленному разрушению композита под напряжением, даже если он однонаправленный и нагрузка прикладывается в направлении волокна.  [c.285]

В соответствии с настояш,ей теорией материалы матрицы, имеющие более высокую скорость ползучести / (t) и более низкое значение начальной податливости J (0), обладают более сильной временной зависимостью разрушения. В частности, скорость увеличения R ( ) зависит от отношения б (i)/6 (0) [уравнение (18)], и эта зависимость определяет длительную прочность композита [уравнение (17)]. Отношения б (i)/6 (0) для двух материалов матрицы можно приблизительно представить следующими выражениями  [c.293]

Вычисленное время до разрушения для двух армированных стеклом матриц показано на рис. 20 сплошными линиями. Видно, что, даже если считать прочность волокон не зависящей от времени, все равно комбинация статистического распределения их прочности с вязкоупругими свойствами матрицы приводит к временной зависимости прочности композита. В рассматриваемом случае демонстрируется влияние изменения вязкоупругих свойств на длительную прочность композита уменьшение прочности армированной эпоксидной смолы по прошествии 10 мин составляет 12%, в то время как уменьшение прочности армированной полиэфирной смолы через такой же промежуток времени составляет 29%.  [c.293]

В настоящее время, по-видимому, нет другой теории, связывающей длительную прочность композиционных материалов, изготовленных из хрупких волокон и вязкоупругой матрицы, с вязко-упругими свойствами материала матрицы. Были предложены еще две теории (будут обсуждены позднее в настоящем разделе) для оценки длительной прочности волокнистых композитов, но они  [c.294]

Во всех практических приложениях вклад длительной прочности матрицы в длительную прочность композита может быть проигнорирован при условии, что волокна непрерывны, нагружение осуществляется в их направлении, а вязкость матрицы больше вязкости волокон. Рис. 8 и 10 могут подтвердить эту точку зрения напряжение в волокне, приводящее к разрушению через 1 час (при 649 °С), составляет около 200 000 фунт/дюйм , в то время как напряжение в матрице, приводящее к разрушению через 1 час (при 649 °С), составляет только 2000 фунт/дюйм .  [c.299]

Испытания на длительную прочность композитов с металлической матрицей, армированной волокнами бора, очень ограничены. В работе [66] осуществлены некоторые эксперименты на ползучесть и длительную прочность при растяжении композитов, изготовленных из алюминия 6061, армированного волокнами бора,  [c.305]


До сих пор мы рассматривали длительную прочность и ползучесть композитов, армированных непрерывными волокнами. Однако не все высокопрочные волокна поставляются в виде непрерывных нитей, и если их все же нужно использовать, то в разорванном виде. Кроме того, непрерывные волокна могут быть разорваны или в процессе изготовления композитов, или при нагружении из-за различий в значениях прочности. Места соединений и отверстия нарушают непрерывность волокон в композите, приводя также к появлению разрывных волокон. В случае композитов, армированных разрывными волокнами, прочность последних реализуется посредством передачи нагрузки от одного волокна к другому сдвигом матрицы, при условии что волокна достаточно длинны. Вопрос о том, какой длины должны быть волокна, чтобы их прочность реализовалась под нагрузкой, был предметом исследований работы [27].  [c.309]

Влияние увеличения отношения Ид, на тип разрушения и долговечность композитов с короткими волокнами исследовано в работе [27]. При кратковременных испытаниях и экспериментах на длительную прочность при растяжении использовалась модель, состоящая из вольфрамовой проволоки и медной матрицы. Испытания проводились на образцах, показанных на рис. 11, б, при двух температурах (649 и 816 °С). Изменяя отношение длины к диаметру волокон, автор смог определить критическое значение ) отношения Ий, необходимое при армировании композита, подвергающегося испытаниям на длительную прочность, и сравнить его со значением, необходимым при кратковременных испытаниях на растяжение.  [c.312]

Жаропрочность композиционных материалов. Уровень длительной прочности и сопротивления ползучести композиционного материала является результатом суммирования вкладов в общую жаропрочность за счет волокон и матрицы.  [c.27]

Длительная прочность композиционных материалов алюминий—бор в поперечном направлении определяется главным образом прочностью материала матрицы, причем, поскольку в процессе испытания происходит отжиг матрицы, то прочность практически не зависит от того, в термообработанном или отожженном состоянии находится материал перед испытанием. Так, например, длительная 100-часовая прочность сплавов 6061 и 2024 при 300° С соответственно равна 2 и 3,6 кгс/мм .Длительная прочность композиционных материалов на основе этих матриц с 50 об. % волокна борсик при 300° С также соответственно равна 2 1И 3 кгс/мм [109].  [c.208]

Предполагается использование композиционных материалов на никелевой основе для длительной работы при температурах выше 1000° С. Однако разработка таких материалов затруднена из-за отсутствия упрочнителей, которые могли бы без потери прочности длительно работать в контакте с никелевой матрицей. Из металлических упрочнителей с точки зрения совместимости с никелевой матрицей лучшей пока остается вольфрамовая проволока, обеспечиваюш,ая довольно высокие значения длительной прочности в композиционных материалах на основе никелевых сплавов. Характеристики прочности и длительной прочности некоторых композиций приведены в табл. 18—22 и 61. Из таблиц видно, что введение вольфрамовой проволоки в количестве 40— 70 об. % позволяет получить материал с длительной (100-часовой) прочностью при 1100° С, равной 13—25 кгс/мм . Основными недостатками этих материалов является высокая плотность и необходимость защиты от окисления при высоких температурах. В этой же таблице приведены свойства композиции никель—углеродное волокно. Композиция привлекательна своей невысокой плотностью. Однако прочность ее невелика, и композиция не может работать длительно при температурах выше 1000° С из-за взаимодействия волокна с матрицей.  [c.217]

Содержание углерода должно быть 0,08—0,2 %. При большом количестве углерода ухудшается свариваемость, ускоряются процессы коагуляции карбидов и твердый раствор обедняется молибденом, что снижает прочностные свойства. Ванадий (ниобий), образуя дисперсные карбиды, упрочняет матрицу. Наиболее высокие значения длительной прочности (см. табл. 12) достигаются после закалки и высокого отпуска. Температура отпуска должна быть выше рабочей, чаще 660—700 °С. В процессе эксплуатации сталей протекают процессы коагуляции карбидов МдС, образование карбидов типа и М С и твердый раствор обедняется  [c.305]

Гамма матрица ( -фаза) Сам по себе никель не наделен явно высоким модулем упругости или низким коэффициентом диффузии (т.е., двумя свойствами, обусловливающими повышенную длительную прочность. Тем не менее, большинство конструкторов газовых турбин выбирает у-матрицу для наиболее тяжелых временных и температурных режимов службы. Примечательно, что сплавы этого типа применимы при Г=Гцд при более низких температурах они служат в течение 100000 ч. Причин столь высокой стойкости можно назвать несколько.  [c.133]

Большинство композитов, описанных в настоящей главе, есть непрерывные однонаправленные волокнистые композиты (НОВК), имеющие большую объемную долю волокон. В результате продольная прочность в основном определяется прочностью самих волокон. Таким образом, если волокна обладают свойством ползучести, то им обладают и композиты на их основе. В небольшом числе работ по композитам, армированным вольфрамом и бериллием, обнаружено разрушение при ползучести. С другой стороны, разрушение под нагружением может появиться как результат комбинации двух факторов статистической прочности хрупких волокон и временных свойств вязкоупругой матрицы. Такая комбинация создает вероятность непрерывного изменения напряженного состояния внутри композита, даже при испытании на разрушение. Эти изменения также приводят к явлению запаздывания разрушения. Поэтому очень важно рассмотреть как матрицу, так и волокно при изучении длительной прочности композита, причем нужно иметь в виду, что матрицы оказывают очень незначительное влияние на кратковременную продольную прочность композитов, но играют очень важную роль в его длительной прочности. Часть работ посвящена исследованию эффектов скорости деформации на прочность НОВК оказалось, что только армированные стеклом композиты, по-видимому, чувствительны к изменениям скорости.  [c.269]


Ранее упоминалось, что как волокно, так и матрица вносят вклад в длительную прочность волокнистых композитов. Начнем с описания тех свойств отдельных составляющих, которые приводят к временнбй зависимости прочности композита.  [c.269]

Из мягких металлических матриц значительное внимание привлекла медь, поэтому здесь представлены ее необходимые характеристики. Испытания на длительную прочность меди OFH высокой чистоты были проведены в [39] при исследовании длительной прочности и ползучести композитов на основе меди, армированной вольфрамовыми волокнами. Были испытаны медные стержни на растяжение при 649 и 816 °С в атмосфере очищенного гелия результаты приведены на рис. 10. Напряжения,  [c.280]

При исследовании длительной прочности композитов, армированных разрывными волокнами, в которых нагрузка передается от одного волокна к другому посредством сдвига матрицы, соответствующая характеристика матрицы — ее длительная прочность при сдвиге. В работе [29] показано, что скорость ползучести композитов, содержащих разрывные волокна, по-видимому, зависит от скорости ползучести матрицы под действием сдвиговых напряжений, которые возникают вблизи границы волокно — матрица. На основе данных [29] в [27] осуществлено исследование долговечности меди, армированной разрывными вольфрамовыми волокнами. Часть исследования состояла в определении свойств длительной прочности при сдвиге меди ОРНС при 649 и 816 °С в вакууме 10" мм Hg). Образец меди, используемый в [27], показан на рис. И, а.  [c.281]

В [27] исследована проблема определения свойств матрицы и установлено соответствие между длительной прочностью при сдвиге меди, испытанной независимо (рис. 11, а), и меди, испытанной в образцах на вытаскивание (рис. 11, б). Образцы на вытаскивание были сделаны так высверливали отверстие в вольфрамовой головке, соединяли с вольфрамовой проволокой диаметром в 0,010 дюйм и с медной ОГНС втулкой и проводили запрессовку при соответствующих условиях. Такие образцы на вытаскивание сконструированы для того, чтобы попытаться воспроизвести условия, возникающие вокруг одного волокна в композите с правильным порядком чередования разрывных волокон. Изменением диаметра высверленного отверстия могут быть воспроизведены условия различного объемного содержания волокна. Результаты приведены на рис. 12. Можно видеть, что при 649 °С соответствие хорошее, но его не наблюдается при 816 °С. Последнее есть ясное указание на возможные ошибки, которые могут появиться, если использовать результаты, полученные лишь на одной серии экспериментальных устройств, для предсказания поведения материала при ругих условиях.  [c.282]

Изучение длительной прочности и ползучести композитов с металлической матрицей осуществлялось рядом исследователей в основном на следующих материалах вольфрам — медь, вольфрам — никелевые сплавы и бор — алюминий. Большинство испытаний проводилось при повышенных температурах, что может привести к недооценке свойств композита из-за взаимодействия между волокнами и матрицей. Экспериментальная работа сопровождалась теоретическим анализом, подобным оценке прочности по правилу смесей . Мак-Данелсом и др. [39] исследована длительная прочность и скорость ползучести композитов на основе меди, армированных вольфрамовыми волокнами полученные данные сопоставлены со свойствами компонентов при помощи соответствующего анализа. Испытания проведены при 649 °С и 816 °С.  [c.297]

В работе [18] исследована комбинация вольфрамовой проволоки диаметром 0,003 дюйм с матрицей Инконел 600. Большинство экспериментов по длительной прочности проведено при 649 °С, а объемное содержание волокон было 7,17 и 27%. Вследствие ограниченного числа испытаний из этой работы можно извлечь лишь следуюш ие полезные замечания максимальные прочности на растяжение всех образцов (матрица и композит) остаются примерно одинаковыми, деформация разрушения уменьшается, а время до разрушения значительно увеличивается с ростом доли армирования.  [c.301]

В работе [16] исследована длительная прочность двух материалов с никелевыми матрицами, армированных вольфрамовой проволокой, содержаш,ей менее 0,01 % включений (в основном, двуокиси кремния) и занимающей примерно 40% объема. Материалы матрицы — Нимокаст 258 и ЕРВ 16. В работе обнаружено, что добавка тонкой вольфрамовой прово.чоки (0,01 дюйм диаметром) оказывает малое или вообще не оказывает усиливающего действия на матрицу, исключение представляет случай, когда температура превьппала 900 °С. Интересно отметить, что модули Юнга волокна и матрицы при комнатной температуре в этом случае очень близки (55-10 фунт/дюйм для волокна и 30 X X 10 фунт/дюйм для матрицы). При высоких температурах испытания 1000 и 1100 С прочностные свойства вольфрамовой проволоки улучшаются, в особенности прочность при разрушении. На рис. 23 представлена зависимость 100-часовой прочности от температуры. В этой же работе [16] приведены и другие испытания, предпринятые для того, чтобы выяснить, как влияет степень армирования на длительную прочность, но полученные результаты, вероятно, недостаточны для каких-либо выводов. Другая часть работы [16] состоит в исследовании влияния диаметра волокна на прочность композитов. Здесь, кажется, существует противоречие между свойствами при кратковременном растяжении и длительных нагружениях при высоких температурах. Для кратковременного нагружения чем тоньше проволока, тем она прочнее, а при продолжительном нагружении и повышенных температурах тонкие вольфрамовые проволоки теряют свои качества быстрее, чем толстые, вероятно, из-за рекристаллизации в поверхностных слоях и реакции между волокном и матрицей.  [c.301]

Практически применяемые стеклопластики почти всегда имеют многонаправлеиное армирование в форме матов из рубленой пряжи, плетеной ткани, ровницы, ортогонально уложенной не переплетенной основы из волокон, или в форме намотанных волокон. В условиях растяжения первый признак поврежденности обычно появляется в виде отслаивания волокон от матрицы в местах, где волокна перпендикулярны направлению нагружения. С ростом нагрузки поврежденность увеличивается вплоть до полного разделения образца. Было показано, что процессы повреждаемости зависят и от времени (длительная прочность) и от числа циклов (усталость).  [c.334]

Подводя итог рассмотрению роли химического взаимодействия между волокнами и матрицей в поведении композиций под нагрузкой, следует еще раз подчеркнуть, что для получения композиций с оптимальным комплексом механических свойств следует допустить некоторую степень химического взаимодействия. Состояние поверхности раздела, прочность связи между компонентами непосредственно влияют на прочность в поперечном направлении, вязкость разрушения, усталостные свойства и прочность при сжатии. Прочность связи несущественно влияет на прочность в продольном направлении и длительную прочность одноосноармиро-ванных волокнистых композиций.  [c.89]

При температурах 1100—1200° С прочность и длительная прочность композиционного материала в 1,5—4 раза превышает аналогичные характеристики сплава матрицы ЖС6К.  [c.105]

Сложность введения ориентированных нитевидных кристаллов в металлическую матрицу с целью максимально возможной реализации их высоких механических свойств не позволяет пока рассматривать композиционные материалы, упрочненные нитевидными кристаллами, как материалы, широко изученные и готовые к практическому применению. Однако работы по исследованию возможности создания материалов с алюминиевой матрицей показывают, что введение нитевидных кристаллов позволяет существенно повысить прочность, особенно при высоких температурах. Композиционный материал, содержаш ий 20 об. % нитевидных кристаллов AI2O3 (имеющих среднюю прочность 560 кгс/мм ), имеет при 500° С предел прочности 21 кгс/мм и 100-часовую длительную прочность 8,4 кгс/мм . Модуль упругости этого материала равен 12 700 кгс/мм [187]. Материал с 30 об. % нитевидных кристаллов AI2O3 имеет при 500° С предел прочности 38 кгс/мм [174].  [c.211]


Керамики из глины и глиносодержащих материалов известны очень давно, это кирпич, черепица, фарфор, фаянс. Однако в настоящее время для нужд ряда отраслей промышленности синтезируют еще и множество других керамических материалов со специальными физико-химическими свойствами диэлектрики и полупроводники, огнеупорные, кислотоупорные, пьезоэлектрические, ферромагнитные и др. Некоторые изделия из таких материалов требуют расчетов не только на кратковременную, но и на длительную прочность. Значительную роль в производстве режущего инструмента играют высокопрочные керамики в виде мелких кристаллических зерен, связанных металлической матрицей. Подобные керамики считаются перспективными как конструкционные материалы [90, 104]. Существуют и другие виды керамических материалов, набор которых все время возрастает. Иногда к ним относят также цемент и бетон.  [c.38]

Обработка титана церием в количестве от 0,2 до 0,7% с последуюшим внутренним окислением редкоземельного металла до двуокиси церия, частицы которой должны быть равномерно диспергированы в матрице, повышает длительную прочность титана [321, хотя добавка 0,4 б церия приводит к образованию богатой церием фазы, выпадающей по границам между зернами, которая ухудшает механические свойства титана 14].  [c.612]

Высокая длительная прочность, неизменность деформативных свойств во времени и низкое удлинение при разрыве волокон бора предопределяют высокий уровень статической усталости и малую ползучесть материалов на их основе. Достаточно высокое сопротивление усталости бороволокнитов, составляющее для материала КМБ-1 м и КМБ-2 0,35—0,40 ГПа, может быть увеличено при использовании более высокопрочной матрицы.  [c.368]

При назначении температуры термической обработки на твер дый раствор ее разброс должен быть ограничен очень узким1 пределами. Если температура слишком высока, то рост зернг может произойти в отдельных местах поковки такими местами могут быть участки с отклонением по химическому соста ву, сохранившимся от литой структуры, в них при завыше НИИ температуры может произойти растворение фаз у или б которые сдерживают рост зерна матрицы. Если температург слишком низка, размер зерна может оказаться меньше, че>( требуется, а по у -фазе может произойти перестаривание и то и другое обстоятельство чреваты недопустимо низкими значениями предела прочности на разрыв и длительной прочности в условиях эксплуатации. Если измерять температур] заготовки с помощью термопары и отладить управление печью, максимальный разброс температуры при термической обработке можно сократить до 9°С.  [c.216]

Главная причина жизнеспособности суперсплавов в том, что они сохраняют выдающуюся прочность в интервале температур, при которых работают детали турбины. Их плотноупакованная решетка г.ц.к. обеспечивает длительную сохранность относительно высокого сопротивления активному растяжению, высокой длительной прочности, стойкости против ползучести и термомеханической усталости. Эти свойства длительно сохраняются вплоть до гомогологических температур значительно более высоких, чем у эквивалентных систем с решеткой о.ц.к. Свой вклад дают и такие характеристики решетки г.ц.к., как высокий модуль упругости, обилие систем скольжения, низкий коэффициент диффузии легирующих элементов. Для прочности сплавов чрезвычайно важна высокая растворимость легирующих элементов в аустенитной матрице, их физико-химические характеристики, обеспечивающие выделение в процессе старения таких интерметаллидных фаз, как у и у . Упрочнения можно достичь также за счет легирования твердого раствора, выделения карбидных фаз в процессе старения и использования их для управления границами зерен за счет направленной кристаллизации и соз-  [c.31]


Смотреть страницы где упоминается термин Матрицы длительная прочность : [c.636]    [c.346]    [c.10]    [c.276]    [c.280]    [c.315]    [c.105]    [c.177]    [c.116]    [c.121]    [c.346]    [c.120]   
Разрушение и усталость Том 5 (1978) -- [ c.281 , c.284 ]



ПОИСК



Прочность длительная



© 2025 Mash-xxl.info Реклама на сайте