Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Локальная положительная инвариантность

Локальная положительная инвариантность 219 Ляпунова функция  [c.241]

Однако теория возмущений не всегда применима. В таких случаях пользуются др. методами, в к-рых центр, роль играют рассмотрение М. р. в целом и изучение общих свойств её матричных элементов, прямо описывающих амплитуды процессов рассеяния и рождения. Гейзенберговы локальные операторы могут быть тогда выражены через расширенную за поверхность энергии М. р. и играют важную роль, поскольку через них накладывается центральное в 5-матричном подходе условие причинности Боголюбова. Это условие приводит к обращению в нуль матричных элементов М. р. в определ. пространственно-временных областях. С др. стороны, условие унитарности в комбинации с положительностью масс всех состояний полной системы (условием спектральности) приводит к обращению в нуль фурье-образов тех же матричных элементов в определ. импульсных областях. Из этих двух свойств можно вывести, что для каждого заданного числа и сорта частиц амплитуды всех возможных реакций суть граничные значения одной аналитической функции многих комплексных переменных, фактически зависящей лишь от их лоренц-инвариантных комбинаций. Из этих свойств голоморфности можно вывести ряд непосредственно связывающих опытные факты физ. следствий. Так, в простых случаях двухчастичного рассеяния, напр. для рассеяния пионов на нуклонах, выписываются дисперсионные соотношения, выражающие вещественную часть амплитуды рассеяния через интеграл от её мнимой части (см. Дисперсионных соотношений метод). На этом пути приходят и к др. важным модельно независимым результатам, не опирающимся на конкретную форму взаимодействия, таким, как перекрёстная симметрия, правила сумм, асимптотические теоремы, результаты относительно асимптотич. автоиодельно-  [c.72]


Квантовая механика ставит в соотвегствие каждой частице поле её волновой ф-цин, дающее распределение различных, относящихся к частице физ, величин. Концепция поля является основной для описания свойств элементарных частиц в их взаимодействий. Конечная цель в этом случае — нахождение свойств частиц из ур-ний поля и перестановочных соотношений, определяющих квантовые свойства материи. Возможный вид ур-ний поля ограничен принципами симметрии и инвариантности, являющимися обобщением эксперим. данных. Лоренц-ковариантность, напр., требует, чтобы волновые ф-ции частиц преобразовались по неприводимым представлениям группы Лоренца. Таких представлений бесконечно иного, однако только часть пз них реализована в природе и соответствует тем или иным элементарным частицам. Реально используются наиб, простые ур-вин полей, являющиеся локальными и не-ревормвруемыми. Попытки построения теорий, не удовлетворяющих этим требованиям,— нелинейной, нелокальной и т. п. теорий поля — влекут за собой пересмотр ряда важнейших принципов, существенных при физ. интерпретации теории (принцип суперпозиции, положительность нормы волновой ф-цив н т. Д.).  [c.56]

В [1-3] было показано, что проблемы математической совместности, унитарности, а также ряд вопросов динамического описания могут быть решены в НТП положительным образом. К числу оставшихся нерешенными относятся вопросы сходимости и макроскопической причинности (а также градиентной инвариантности в электродинамике). Как было показано еще Блохом [4], в НТП с жестким форм-фактором в вершинной части лагранжиана взаимодействия появляются специфические расходимости по углам псевдоевклидова пространства, связанные с нарушением правил обхода Фейнмана из-за акаузальности теории. Другими словами, расходимости связаны с большими значениями пространственных и временных компонент виртуальных импульсов при небольшой величине их четырехмерного квадрата. Анализ, основанный на сформулированной в [3 диаграммной технике, показывает, что форм-фактор устраняет лишь логарифмические расходимости локальной теории (в частности, расходимости собственной энергии фермиона, см. также [5]). Квадратично же расходившиеся матричные элементы остаются расходящимися и в НТП при этом дело не сводится к появлению бесконечной константы, а расходимость возникает лишь при определенных (пространственноподобных) импульсах диаграммы. Таким образом, рассматриваемый вариант НТП оказывается во всяком случае неприменимым к весьма актуальному случаю неперенормируемой теории.  [c.143]


Вообще говоря, асимптотическое поведение потоков на поверхностях характеризуется медленным ростом числа орбит, но они обладают менее равномерными типами возвращения и статистического поведения, чем обратимые одномерные отображения, изучаемые в гл. 11 и 12. Первое обстоятельство тесно связано с тем фактом, что и орбиты, и одномерные трансверсали к потоку локально делят поверхность второе же обязано своим появлением прежде всего более сложной, чем у окружности (и тора), топологии поверхностей рода выще единицы и, в меньщей степени, эффектам замены времени. Характерными проявлениями этого типа сложности, промежуточного между простым поведением нашей первой группы примеров ( 1.3-1.6) и диффеоморфизмами окружности с одной стороны и примерами с положительной топологической энтропией ( 1.7-1.9, 5.4, 9.6) с другой, являются теоремы о конечности числа нетривиальных замыканий орбит (теорема 14.6.3) и неатомарных эргодических инвариантных мер (теорема 14.7.6) для потоков на поверхностях рода больще единицы. Эти результаты параллельны единственности минимального множества (предложение 11.2.5) и строгой эргодичности (теорема 11.2.9) гомеоморфизмов окружности.  [c.454]

Как мы видели в предыдущей главе, необратимые отображения отрезка могут иметь периодические точки различных периодов. Для /-периодической точки р областью притяжения В этой точки называется совокупность всех точек, положительно асимптотичных кр р может быть притягивающей нли полуустойчивой точкой). Мы называем объединение компонент связности, которые содержат точку орбиты 0 р), областью непосредственного притяжения точки р. Области притяжения, равно как и области непосредственного притяжения, очевидно, являются открытыми множествами. Рассмотрим объединение К полуустойчивых точек и дополнения к объединению всех областей притяжения периодических точек отображения /. Это множество называется универсальным отталкивающим множеством отображения /. По построению оно замкнуто и /-инвариантно. Это множество также / -инвариантно в том смысле, что f- R) = R. Очевидно, все сложные явления динамики происходят на R. Например, носители всех неатомарных /-инвариантных мер лежат в Л, так что по вариационному принципу 4.5.3 ьр(/) — 1ор(/1д)- Если существует лишь конечное множество притягивающих периодических точек, то Л — отталкивающее множество в традиционном смысле слова, т. е. для каждой малой окрестности П множества Л н точки X е U R существует такое п е N. что / х) 11. Это служит мотивировкой для анализа гиперболических отталкивающих множеств. Отталкивающее гиперболическое множество (см. определение 6.4.3) называется локально максимальным, если оно обладает открытой окрестностью, которая не содержит никакого большего инвариантного множества.  [c.522]

Замечания. 1. Понятно, что перенормировка делается таким образом, чтобы detren оставался калибровочно-инвариантным и вычеты соответствовали локальным контрчленам, так что положительность по Остервальдеру — Шрадеру сохраняется (все эти вопросы следовало бы обсудить более подробно см. [74J).  [c.115]


Смотреть страницы где упоминается термин Локальная положительная инвариантность : [c.219]    [c.35]    [c.36]    [c.203]    [c.564]    [c.13]   
Динамические системы-1 (1985) -- [ c.219 ]



ПОИСК



Г локальный

Инвариантность

Инвариантный тор

К локальности



© 2025 Mash-xxl.info Реклама на сайте