Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фабри — Перо спектроскопия

Фабри — Перо спектроскопия 48  [c.411]

Следующий простой опыт делает очень наглядным значение дисперсионной области. Ртутная лампа в момент зажигания содержит ртутные пары при низком давлении и испускает сравнительно узкие линии, дающие в спектроскопе с эталоном Фабри—Перо (расстояние между зеркалами около 1 см) резкие максимумы и минимумы. Через некоторое время лампа разогревается, плотность пара возрастает и линии становятся настолько широкими, что ДА, превышает О прибора максимумы сливаются и интерференционная картина исчезает. Если, однако, начать энергично обдувать лампу вентилятором, то она охлаждается и максимумы вновь разделяются.  [c.218]


Интерферометр Фабри—Перо. Интерферометр, или эталон Фабри—Перо, является в настоящее время основным прибором в спектроскопии высокой разрешающей силы. Его действие основано на интерференции большого числа лучей, получаемых при многократном отражении световой волны между двумя параллельно расположенными плоскими зеркалами, обладающими частичным пропусканием (рис. 26). В современных интерферометрах, как правило, используют многослойные диэлектрические зеркальные покрытия, которые наносят на подложки из оптического стекла или кварца в вакууме. Они позволяют получать высокие коэффициенты отражения света при малой величине потерь на поглощение. Худшие характеристики имеют покрытия из тонких пленок серебра и алюминия.  [c.76]

В настоящее время интерферометр Фабри —Перо (ИФП) широко используется при решении как фундаментальных, так и прикладных задач в областях спектроскопии, квантовой электроники, астрофизики, газодинамики, космических и термоядерных исследований, метрологии и спектрального анализа. Он позволяет получать ценную информацию при изучении атомов и молекул, плазмы, газообразных, жидких и твердых тел. Приборы и установки с ИФП, в том числе лазерные, выпускаются отечественной промышленностью и фирмами ведущих зарубежных государств. Появление новых и развитие старых областей применения, создание лазеров поставило спектроскопистов перед необходимостью развития теории, методов и практики использования реального ИФП.  [c.3]

Многолучевой интерферометр типа Фабри-Перо является спектральным Прибором высокой разрешающей силы. Он дает возможность различать свет различных длин волн, т. е. получать разделенное изображение двух близко расположенных относительно друг друга спектральных линий. Интерференционную картину определяют дисперсия интерферометра и его разрешающая сила. Угловая дисперсия характеризует величину угла, на который разойдутся два луча, различающиеся по длинам волн на весьма малую спектральную величину. Линейная дисперсия показывает расстояние между изображениями линий в фокальной плоскости объектива. Разрешающая сила характеризует способность интерференционного спектроскопа различать две близко расположенные спектральные линии источника.  [c.13]

М а л ы ш е в Г. М., Рыск и н А. И. О возможности применения волоконной оптИки в установке с интерферометром Фабри Перо и электронно, оптическим преобразователем, Оптика и спектроскопия , 1964, 17, вып. 5, стр. 799—800.  [c.240]


Таким образом, характеристики приборов, основанных на применении дифракционных решеток, в настоящее время близки к тем характеристикам, которые необходимы для спектроскопии высокой разрешающей силы. Но интерферометр Фабри—Перо все еще остается непревзойденным по своей разрешающей силе и светосиле во многих областях спектра. Поскольку у него мала область дисперсии ( 1 А), его иногда приходится применять в схемах со скрещенной дисперсией.  [c.329]

В лазерной спектроскопии представляют интерес три основных типа приборов, измеряющих длины волн призменный спектрограф, предназначенный для фоторегистрации дифракционный монохроматор с регулируемыми входной и выходной щелями, снабженный набором фотоприемников и решеток для перекрытия спектрального диапазона от ультрафиолетовой до дальней инфракрасной области, и, наконец, интерферометр Фабри—Перо, в котором чаще всего применяется пьезоэлектрическое сканирование с набором зеркал и приемников для ближней ультрафиолетовой и дальней инфракрасной области спектра. Ниже мы рассмотрим основные особенности таких приборов.  [c.334]

Только самые большие спектрографы с вогнутой решеткой обеспечивают разрешение, позволяющее разделить длины волн осевых мод твердотельных лазеров. Поскольку в лазерной спектроскопии высокой разрешающей силы спектрографы с вогнутой решеткой почти совершенно вытеснены сканирующими интерферометрами Фабри—Перо, мы не будем останавливаться на преимуществах и недостатках многих систем с решетками. По данному вопросу имеется обширная литература [46  [c.341]

Поскольку порядок интерференции велик, а область дисперсии прибора мала, в ряде случаев для наблюдения отдельной спектральной линии необходимо дополнительное поперечное спектральное разложение света. Можно также установить эталон Фабри — Перо перед щелью дифракционного спектрографа, так что каждая линия будет представлять собой полоску, вырезанную из системы колец. Полное разрешение системы, состоящей из эталона Фабри — Перо и спектрографа, достаточно высоко для изучения средней сверхтонкой структуры большого числа спектральных линий. Правда, в лазерной спектроскопии интерес представляет обычно одна или всего лишь несколько линий, так что вместо системы с поперечной дисперсией можно взять узкополосный фильтр.  [c.346]

В качестве эталона длин волн пользуются и полосами Эд-сона — Батлера [72]. Если пучок белого света проходит через интерферометр Фабри — Перо с расстоянием между зеркалами L, то, после того как свет проходит через спектроскоп, разрешается набор широких интерференционных полос, отделенных друг от друга спектральным интервалом (1/2L). Шкала, образованная такими полосами, калибруется по какой-нибудь стандартной линии.  [c.354]

Эталон Фабри—Перо состоит из двух полупрозрачных плоских и параллельных пластин (слегка клиновидных) из кварца или стекла, на которые нанесены покрытия с высоким коэффициентом отражения. Расстояние между отражающими плоскостями фиксировано жестким разделительным элементом с низким коэффициентом теплового расширения. Чаще всего эталон Фабри—Перо применяется в спектроскопии как фильтр с малой угловой апертурой. При освещении эталона источником с узким спектральным интервалом он пропускает свет только под определенными углами. В результате в фокальной плоскости линзы возникает система концентрических колец. Освещенность в фокальной плоскости дается выражением [11]  [c.380]

Для типичного интерферометра Фабри—Перо с высоким разрешением, предназначенного для лазерной спектроскопии, примем, что nd = 100 см, R = 0,95, os ф 1 при X = 1 ж/с, или k = == 6 10 см К Тогда / о — 10 . Следовательно, и интерферометром Фабри — Перо можно измерять ширины линий порядка бЯ = 10 нм. Этого тоже недостаточно для спектроскопии газовых лазеров, но достаточно для других типов лазеров.  [c.422]

Любая плоскопараллельная прозрачная пластинка представляет собой эталон Фабри-Перо для падающего на нее света. Резонансные свойства пластинок широко используются для лазерной термометрии. Однако эталоны Фабри-Перо для термометрии и для спектроскопии высокого разрешения представляют собой противоположные предельные случаи термометрический эталон характеризуется значениями F 2- 4, тогда как спектроскопический — значениями F 50-i-60 (более высоких значений трудно достичь из-за погрешностей в изготовлении зеркал).  [c.39]


Большое число когерентных световых пучков может возникнуть в результате дифракции при прохождении плоской волны через экран с одинаковыми регулярно расположенными отверстиями (метод деления волнового фронта). Распределение интенсивности в такой многолучевой интерференционной картине будет рассмотрено в 6.5 на примере дифракционной решетки. Здесь мы изучим интерференцию при многократных отражениях света от двух параллельных поверхностей (метод деления амплитуды). На этом принципе действует интерферометр Фабри—Перо, широко используемый в спектроскопии высокого разрешения и в метрологии. Он может быть выполнен в виде плоскопараллельной стеклянной или кварцевой пластины, на обе поверхности которой нанесены отражающие слои, либо в виде двух пластин, у которых покрытые отражающими слоями плоскости установлены строго параллельно друг другу и разделены воздушным промежутком.  [c.256]

Интерферометр Фабри — Перо (ИФП) применяется в качестве прибора для монохроматизации излучения как прибор высокого разрешения в метрологии и спектроскопии он является также резонатором лазера.  [c.203]

Обычно применяются интерферометры Фабри — Перо с фиксированным расстоянием I = 0,3—200 мм между пластинами (с фотографической регистрацией) и с переменной длиной около й = 500 мм, которая перестраивается часто при помощи пьезоэлектрического эффекта. Таким образом, в рабочем режиме разрешающая способность имеет порядок 10 . При заданной разрешающей способности с помощью интерферометра Фабри — Перо достигаются большие мощности на приемнике, чем в случае спектрометров с решеткой и со сравнимой величиной диспергирующего элемента. Кроме интерферометров Фабри —Перо с плоскими зеркалами, в лазерной спектроскопии и в НЛО применяются также интерферометры Фабри —Перо со сферическими зеркалами при надлежащем выборе конфигураций может быть до-  [c.51]

Интерферометр Фабри — Перо является самым распространенным спектроскопом высокой разрешающей силы. Интерференционная картина образуется в результате многолучевой интерференции при прохождении пучка лучей через плоскопараллельную пластину с двумя зеркальными поверхностями (рис. 284)  [c.450]

Работы Майкельсона, Фабри, Перо, Бенуа и других ученых, посвященные изучению спектров различных элементов и послужившие началом развития новой отрасли науки — спектроскопии, позволили установить и принять в 1905 г. на Международном конгрессе по изучению Солнца, что длины световых волн следует определять путем сравнения их с одной длиной волны, принятой за эталонную и сравненную предварительно с длиной прототипа метра. Эталонная длина волны получила название новой единицы — ангстрема. Конгресс по изучению Солнца принял в качестве эталонной длину волны красной линии кадмия, сравненную Майкельсоном с прототипом метра. После повторного, уточненного, сравнения, проведенного в 1905—1906 гг. Бенуа, Фабри и Перо, ангстрем был определен как - - длин волн красной линии кадмия, где знамена-  [c.7]

Использование лазерного источника в спектроскопии позволило более качественно производить измерения рассеянного света. Так, высокостабилизированный Не—Ые-лазер с шириной полосы излучения меньше 100 Гц может использоваться как источник света и как генератор электромагнитных колебаний. Частотный сдвиг рассеянного света можно измерять либо при помощи интерферометра Фабри—Перо, либо спектрометром по методу биений. При этом могут быть измерены сдвиги от нескольких гГц до нескольких кГц и получена информация о времени релаксации молекул в жидких и полимерных растворах в диапазоне от 10 до 10 с.  [c.219]

Лазер с перестраиваемой частотой и регистрирующей системой является принципиально новым монохроматором. Абс. измерения длии волн генерации осуществляются с помощью спец. устройства (Х-метра), в к-ром сравниваются длины волн лазера и эталона (как правило, им является стабилизированный Не— Ne-.uasep) с помощью интерферометров Манкельсона, Фабри — Перо, пластинки Физо. Относит, точность измерения при этом —10 —10 8 достаточна для спектральных исследований жидкостей и твёрдых тол и недостаточна для спектроскопии сверхвысокого разрешения. Частота перестраиваемого лазера здесь измеряется гетеродинным. методом относительно опорного стабилизированного лазера, частота к-рого известна. Диапазон частотных измерений определяется быстродействием фотоприёмника и может быть - 10 в видимой и в ИК-областях спектра. Использование методов измерения абс. частот генерации лазеров в спектроскопии позволяет измерять частоты переходов с относительной точностью 10  [c.555]

Основой оптич. схем С. п. этой группы является диспергирующий элемент дифракционная решётка, зше-летт, эшелле, интерферометр Фабри — Перо, спектральная призма), обладающий угловой дисперсией Дф/ДЯ, что позволяет развернуть в фокальной плоскости изображения входной щели в излучении разных к (рис. 3). Для объективов Oj и обычно используются зеркала, не обладающие хроматич. аберрациями (в отличие от линзовых систем). Если в фокальной плоскости установлена одна выходная щель, схема С. п. представляет собой схему монохроматора, если неск. щелей,— полихроматора, если фоточувствит. слой или глаз,— спектрографа или спектроскопа.  [c.612]

Для полного использования потенциальных возможностей этого метода оставалось ждать изобретения современной цифровой вьиисли-тельной машины. В приложении к измерениям длин волн двухлучевой интерферометр бьш заменен многолучевым методом, использованным в интерферометре Фабри-Перо. Затем в 50-х годах началось возрождение метода, послужившее основой современной фурье-спектроскопии (разд. 6.5).  [c.137]

Основной сферой Применения многолучевых интерферометров Фабри-Перо является спектроскопия высокой разрешающей силы [61, 117, НО]. Свойство Интерферометра разрешать очень близко расположенные друг к другу линии источника позволяет успешно исследовать сверхтонкую структуру спектральных линий, обусловленную наличием у атомного ядра механического и магнитного моментов, свойства атомного ядра по изотопическому сдвигу спектральньгх линий, вызванному движенйем ядра и электрона вокруг общего центра тяжести, влияние внешних электрических полей на тонкую структуру линии и т. д. Наряду с этим интерференционные спектроскопы Фабри-Перо широко применяются для определения температуры в плазме, пламенах, газах, для измерения скорости течений по допплеровскому уширению, для изучения спектров поглощения и т. д.  [c.5]


За последние 10—15 лет значительно расширилась область Приложений многолучевой интерференционной спектроскопии. Развитие фотоэлектрического метода регистрации интерференционной картины, разработка многослойных диэлектрических слоев с высоким коэ( ициентом пропускания и малой величиной поглощения, применение электронно-оптических преобразователей, создание широкой номенклатуры узкополосных интерференционных фильтров для видимой, ультрафиолетовой и инфракрасной областей спектра, разработка способов сканирования интерференционной картины и устройств для их реализации, теоретическое обоснование и экспериментальное осуществление муль-типлекс-эталона существенно расширили экспериментальные возможности спектрометра Фабри-Перо во всех областях оптического спектра. Следует заметить при этом, что важной причиной успешного применения эталона Фабри-Перо является его высокая свето--сила, превосходящая светосилу обычных спектральных приборов с призмой или решеткой, имеющих одинаковую тэлором Фаори-Перо величину разрешающей сйлы,  [c.5]

С к о к о в И. В. К вопросу применения сложного эталона Фабри-Перо для изучения прозрачных пеоднород остей. Журнал прикладной спектроскопии , 1967. Вып. I, стр. 1б—2ь  [c.241]

Возможно получение свертки более чем двух функций, которая также имеет физический смысл, в частности в оптике (в интерферометрии, спектроскопии, голографии и т. д.). Например, функция пропускания W[a), или аппаратная функция интерферометра Фабри — Перо, в зависимости от волнового числа о= = 1Д, где % — длина волны света в сантиметрах, определяется, согласно Шаббалю [6], следующим уравнением  [c.201]

Можно сделать неправильный вывод, что интерферометр Фабри—Перо — самый лучший прибор для лазерной спектроскопии, хотя бы потому, что в спектроскопии высокого разрешения, т. е. в спектроскопии газовых лазеров, он — единственный прибор, обеспечивающий необходимое разрешение. Но при быстрых спектральных наблюдениях лучше всего пользоваться призменным спектрометром. А для точных измерений длин волн больше всего подходит метровый монохроматор Черни—Тернера с плоской дифракционной решеткой. Он особенно выгоден тогда, когда требуется разрешить вранхательные линии в излучении инфракрасных молекулярных лазеров.  [c.334]

Для исследования осевых мод в лазерной спектроскопии широко применяется интерферометр Фабри—Перо со сферическими зеркалами, или интерферометр Конна [59]. Он представляет собой афокальную систему с единичным увеличением, в которой плоские пластины интерферометра Фабри — Перо заменены парой конфокальных зеркал. Как будет показано в гл. 8, у такого интерферометра больше произведение разрешения на светосилу и его nponi,e юстировать. Диаметр осевой моды интерферометра Конна меньше, чем соответствуюндий диаметр в интерферометре Фабри — Перо. Это значит, что используется меньшая часть пластины и требования к качеству отражаюидей поверхности менее жесткие. Кроме того, благодаря тому что энергия распределена в круге меньшего диаметра, уменьшаются дифракционные потери.  [c.351]

Двухпроходная схема. Для увеличения разрешающей способности в оптической спектроскопии применяются многопроходные интерферометры Фабри-Перо, в которых световой пучок взаимодействует с оптическим резонатором последовательно несколько раз (существуют двух-, трех- и пятипроходные интерферометры) [6.55]. Рассмотрим, что дает неоднократное взаимодействие света с пластинкой применительно к термометрии. Пусть пучок, отраженный от плоко-параллельной пластинки, с помощью зеркала снова направляется на ту же пластинку. В результате такого двукратного отражения регистрируется величина. Если пучок, прошедший сквозь пластинку, отразить в обратном направлении и снова пропустить сквозь ту же пластинку, регистрируемой величиной будет Т . Форма резонансов заметно меняется минимум отражения становится шире, максимум пропускания сужается. Положение минимума отражения на кривой /2 (0) определяется с меньшей точностью, чем на кривой Я 9). Крутизна резонансной кривой Т в) в окрестности точки перегиба возросла по сравнению с крутизной кривой Т 9). Это позволяет увеличить чувствительность определения малых приращений температуры кристалла (намного меньших, чем температурный интервал между минимумом и максимумом). Однако для измерений в случае, когда увеличение температуры кристалла намного больше, чем интервал Ав, число прохождений пучка сквозь кристалл не играет заметной роли.  [c.176]

Спектральные аппарать должны обеспечивать возможность работы со слабыми интенсивностями исследуемого излучения. В этом отношении интерферометр Фабри—Перо существенно превосходит дифракционную решетку, особенно если пользоваться фотоэлектрической регистрацией в схеме сканирующего интерферометра Фабри—Перо. Разрешающая способность в Фурье-спектроскопии определяется максимальной разностью хода, которая может быть обеспечена механизмом подвижного зеркал , и достигает больших значений.  [c.231]

СДВИГОВ уровней энергии атомов, изучение вакуумных эффектов, исследование тонкой структуры линий рэлеевского рассеяния и др. К спектроскопам высокой разрешающей силы относятся ступенчатая решетка (эшелон Майкельсона) отражательный эшелон, пластина с боковым входом луча (пластина Люммера—Герке) интерферометр (пластина) Фабри —Перо и сложный интерферометр-мультиплекс (на основе последнего прибора).  [c.448]


Смотреть страницы где упоминается термин Фабри — Перо спектроскопия : [c.306]    [c.197]    [c.252]    [c.252]    [c.236]    [c.237]    [c.249]    [c.345]    [c.262]    [c.172]    [c.172]    [c.173]    [c.221]    [c.172]    [c.172]    [c.172]    [c.173]    [c.173]    [c.238]   
Задачи по оптике (1976) -- [ c.48 ]



ПОИСК



Перила

Перова

Рен (перо)

Спектроскоп

Спектроскопия

Спектроскопия Фабри—Перо (интерференционная)

Фабри и Перо

Фабри — Перо спектроскопия эталон



© 2025 Mash-xxl.info Реклама на сайте