Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энтальпия (определение)

Начальную часть теплового расчета, включающую определение объема воздуха, продуктов сгорания и их энтальпии, определение тепловых потерь и расхода топлива и собственно расчет теплообмена в топке, выполняют в той же последовательности, как и для барабанного парогенератора.  [c.166]

Встречаются задачи, где необходимо учитывать одновременно д а сохраняемых свойства. В гл. 6 эти задачи обсуждались применительно к системе Н2О — воздух. Расчет установок с такими системами будет разбираться в 7-3. Здесь мы ограничимся переносом только одного сохраняемого свойства. В 6-5 уже пояснялось, что в некоторых задачах подобного рода можно обойтись одной лишь энтальпией, определенной соответствующим образом. Отсюда следует, что разбираемый здесь случай одного сохраняемого свойства подходит также и для системы Н2О — воздух, (ЧТО будет показано ниже в 7-5.  [c.297]


Здесь 5 — энтропия, а —4-вектор энтальпии, определенный (6.151). В отличие от 1 4-импульс г в (6.149) не 4-вектор. Связь между этими величинами в соответствии с (6.149) — (6.151) следующая  [c.172]

Рис. 2.4. К определению физического смысла энтальпии Рис. 2.4. К определению физического смысла энтальпии
Для процессов при постоянном давлении изменение энтальпии наиболее удобно вычислять с помощью теплоемкости при постоянном давлении. По определению  [c.41]

Из баланса энергии и определения энтальпии для процессов при постоянном давлении  [c.51]

Стандартная теплота образования — это изменение энтальпии при образовании соединения при 25 °С и 1 ат.м из его элементов в свободном виде в их естественном состоянии при 25 °С и 1 атм. Стандартная теплота сгорания — это изменение энтальпии при реакции данного вещества с элементарным кислородом, взятыми каждый при 25 °С и 1 атм при условии образования определенных продуктов при тех же температуре и давлении. Продукты сгорания определяются элементами, составляющими исходное соединение. Углерод окисляется до двуокиси углерода, водород — до воды (жидкой), азот не окисляется, но образует газообразный азот, и сера обычно окисляется до двуокиси серы.  [c.62]

Пример 2. Энтальпия как функция температуры и давления. По аналогии можно получить выражение для изменения энтальпии как функции температуры и давления. По определению полного дифференциала  [c.153]

Величину Д можно легко вычислить из определения энтальпии  [c.162]

Изменение внутренней энергии может быть вычислено из определения энтальпии  [c.175]

Определение константы химического равновесия по существу сводится к вычислению изменения свободной энергии реакции при условии стандартного состояния. Изменение свободной энергии реакции при условии изотермического стандартного состояния определяется изменением энтальпии и энтропии согласно выражению  [c.294]

Метод вычисления изменения энтальпии реакции зависит прежде всего от эмпирических данных теплот образования и теплот сгорания (см. гл. 1). Имеются различные эмпирические методы для определения теплот образования. Такие методы применяют, когда нет прямых экспериментальных данных. Данные по тепло-там образования и теплотам сгорания обычно относятся к 25 °С и 1 атм.  [c.294]


Удельная энтальпия, т. е. энтальпия, отнесенная к 1 кг, обозначается буквой i и представляет собой по определению сложную функцию вида  [c.64]

Следовательно, для определения теплоты и необходимо знать либо теплоемкости в интервале температур от 0° С до t° С, либо значения энтальпий и внутренних энергий.  [c.79]

Определение удельного объема, энтальпии и внутренней энергии влажного пара.  [c.188]

Записанные выражения позволяют рассчитать изменение температуры пористого материала, энтальпии охладителя, расходного массового паросодержания двухфазного потока в области испарения. Для определения ее относительной протяженности к -1 используем последнее из условий (7.8), которое с учетом (7.14)., .(7.18) можно записать так  [c.163]

Величины, входящие в формулу (241), могут быть определены при помощи диаграммы 1з. Для перегретого пара начальное состояние находится в пересечении изобары н изотермы (рис. 86) для влажного — в пересечении изобары Ру и линии сухости Х1 для сухого насыщенного — в пересечении изобары ру и верхней пограничной кривой. Проектируя точку 1, изображающую начальное состояние пара, на ось ординат, находим энтальпию пара П. а проведя из нее адиабату расширения (прямую, параллельную оси ординат) до конечной изобары, получаем точку 2, характеризующую состояние отработавшего пара. По этой точке находим энтальпию пара в конечном состоянии /3. Отрезок 1—2 в определенном масштабе дает значение величины 1у — г  [c.232]

При металлургических и термодинамических расчетах пользоваться абсолютными значениями энтальпий (8.9), отсчитываемых от О К, нет особой необходимости. Можно установить другой уровень отсчета, более удобный и более определенный, так как в реальных расчетах нас интересуют лишь разности энтальпий перехода системы из одного состояния в другое.  [c.256]

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объемом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы У аналогично внутренней энергии имеет вполне определенное значение для каждого состояния, т. е. является функцией состояния. Следовательно, в процессе изменения состояния  [c.31]

Для проведения расчетов, связанных с влажны.м воздухом, пользуются i —й -диаграммой, предложенной Рамзиным. На диаграмме по оси ординат откладываются значения энтальпии влажного воздуха из расчета на 1 кг сухого газа, а по оси абсцисс — влагосодер-жание в граммах на 1 кг сухого воздуха. Диаграмма построена только для давления 745 мм. рт. ст. В основном диаграмма служит для определения параметров процесса во время сушки.  [c.122]

При вычислении величины изменения энтальпии не имеет значения, какое состояние берется за начало отсчета. В термохимии принято за стандартное состояние — состояние элементов при Т = 298° К и р = 1,0133 бар. Причем для элементов в стандартном состоянии величина A/j,,3 равна нулю. (Нижний индекс в этой величине указывает на стандартную абсолютную температуру, верхний — на стандартное давление). Теплота образования вещества из элементов, определенная при стандартных условиях, называется стандартной теплотой образования и обозначается А/"  [c.196]

Рассмотрим далее вопрос об определении температуры горячей поверхности пористой стенки при эффузионном охлаждении. Оценим радиационно-конвективный теплообмен между горячим газом и стенкой коэффициентом а. Если пренебречь теплопроводностью стенки вдоль поверхности, то при стационарном режиме теплообмена подведенная к поверхности теплота расходуется только на увеличение энтальпии охладителя в системе.  [c.475]

Внутренняя энергия и энтальпия имеют, как уже указывалось, в каждом из состояний вполне определенное и притом единственное значение, т. е. являются функциями состояния.  [c.30]

Для того чтобы тело производило работу, его состояние должно изменяться. Однако процесс изменения состояния однородного тела, находящегося во внешней среде с постоянными р и Т, может происходить только в том случае, если его давление и температура не равны р, Т, т. е. если тело не находится в равновесии с окружающей средой. (В более сложных системах с химическими реакциями или фазовыми превращениями состояние системы может изменяться и при неизменных р и Т, равных р и Т. ) Таким образом, в общем случае следует исходить из того, что равновесия между телом и окружающей средой может и не быть, т. е. температура и давление тела не равны температуре и давлению среды Т Т, р ф р, г энтальпия и энтропия тела в начальном и конечном состояниях имеют вполне определенные значения.  [c.81]


При этом, однако, возникает вопрос, что следует понимать под 11, 1, 8, Р, Ф в общем случае необратимого процесса, когда состояние самого тела не является равновесным и, кроме того, отсутствует равновесие между телом и окружающей средой. Очевидно, что объем тела V сохраняет свое значение как параметр состояния и в случае неравновесных состояний то же самое относится к внутренней энергии тела и и его энтропии 5. Энтальпия I представляет собой сумму внутренних энергий тела и находящегося с ним в механическом взаимодействии внешнего теплоизолированного источника работы и поэтому также должна иметь в неравновесном состоянии тела вполне определенное значение. Другие параметры, в частности давление р и температура Т, при неравновесном состоянии могут не иметь определенного значения (вспомним, что при отсутствии равновесия температура и давление в разных частях тела могут быть различными). Чтобы устранить эту неопределенность, обычно предполагают, что начальное и конечное состояния тела являются равновесными (т. е. тело находится в этих состояниях в равновесии, причем не обязательно, чтобы имело место также равновесие с окружающей средой).  [c.101]

В отличие от обратимых процессов при анализе необратимых процессов по известному аналитическому выражению одной из характеристических функций тела или уравнению состояния данного тела и зависимости для теплоемкости С]/ или Ср могут быть определены не произведенная работа L или Ь и поглощенная теплота Q, а лишь разность Ь — Q или Ь — равная согласно выражениям (2.7) и (2.8) убыли внутренней энергии или энтальпии тела. Только если Q или Ь равняются нулю (равенство (2 = 0 имеет место при адиабатическом процессе, а равенство В = 0 — в случае предельно необратимого процесса), отсюда может быть найдено также значение Т и Т или Q. В самом общем случае для раздельного определения Q и Ь или Ь нужно знать характеристические функции как самого тела, так и окружающей среды и их изменение в рассматриваемом необратимом процессе. При этом всегда произведенная полезная внешняя работа будет меньше по сравнению с работой происходящего в тех же условиях обратимого процесса, а количество полученной и отданной телом теплоты соответственно меньше и больше.  [c.159]

Результаты работ [5, 6] несколько позже были получены Pao [8] для несовершенного газа. Подход Pao отличается от использованного в работах [3-6]. Его обоснование было дано Гудерлеем [9], а объяснение причины удачи Pao — в статье [10]. В работе [9] приведено также решение задачи в случае вихревых течений, когда плотность и давление представимы в виде произведений функций от энтропии на функции от энтальпии. Определению оптимальной формы сопла с учетом веса его стенок посвящена статья Стернина [11]. Один вариант задачи о наилучшей форме тела вращения рассмотрен Pao [12]. Перечисленные результаты получены на основе необходимых условий экстремума.  [c.46]

V 2На — фиктивная скорость, соответствующая изоэнтропий-ному перепаду энтальпий в турбине, Дж/кг (здесь и далее звездочкой отмечен перепад энтальпий, определенный по параметрам торможения входа и выхода, без звездочки — определенный по параметрам торможения входа и статическим параметрам выхода).  [c.247]

Это уравнение по существу содержит все основные данные, которые можно получить из термодинамического анализа замкнутой системы с объемом, в качестве единственного внешнего параметра оно является отправной точкой для вывода конкретных рабочих уравнений. В сочетании с определением других термодинамических функций, таких как энтальпия, теплоемкость и свободная энергия, а также с помощью правила частного дифференцирования, это уравнение дает выражение для полного дифференциала любой термодинамической величины в функции р, у, Т. Если известны свойства, адэкватные р, и, Т, то дифференциальное уравнение можно проинтегрировать, чтобы получить изменение термодинамической функции при переходе системы из одного состояния в другое.  [c.150]

Одной ИЗ наиболее характерных особенностей течения закрученного потока по осесимметричному каналу является открытый в 1931 г. французским инженером металлургом Ж.Ж. Ранком эффект, заключающийся в существенной температурной неравномерности в потоке газа по сечению канала. При определенной конструкции устройства с закрученным потоком его удается разделить на два потока, различающиеся по полной энтальпии. Это явление получило название эффекта Ранка, или эффекта энергоразделения [244, 247].  [c.26]

Опыты [231, 267] показывают, что термический КПД г монотонно возрастает с увеличением расхода плазмообразуюшего газа G, асимптотически приближаясь к некоторому предельному значению. Таким образом, существует определенный расход газа, при котором энтальпия, а следовательно, и среднеинтегральная температура плазмы, максимальны.  [c.353]

Сочетание высокой интенсивности теплообмена с чрезвычайно развитой внутрипоровой поверхностью, обладающей необходимыми каталитическими свойствами, обеспечивает благоприятные условия для быстрого протекания химической реакции в потоке внутри нагреваемой проницаемой структуры. Применение химически реагирующих охладителей позволяет существенно повысить их тепловоспринимающую способность вследствие теплового эффекта эндотермической реакции. Выполненные оценки показали, что наилучшими свойствами для таких целей обладает аммиак, причем наиболее важными из них являются следующие высокая теплоемкость и энтальпия диссоциации довольно высокая скорость разложения в определенном диапазоне температур. В результате реакции образуются только газообразные продукты, которые не вызывают химической эрозии материала каркаса. Получающаяся в ходе диссоциации  [c.63]


Так как площади диаграммы Ts, ограниченные кривой процесса, крайними ординатами и осью абсцисс, измеряют в определенном масштабе количества теплоты, подведенной к рабочему телу при постоянном давлении, то площадь OOiAiG соответствует энтальпии жидкости i, площадь A B FG — теплоте парообразования (г) и площадь парообразования B iDF — теплоте перегрева. Вся площадь ООуАуВ С Р соответствует энтальпии перегретого пара 1.  [c.186]

Задачи, связанные с дросселированием пара, обычно сводятся к определению параметров состояния пара после дросселирования. Проще всего они рщнагатся при помощи диаграммы is. Так как в начальном и конечном состояниях энтальпия пара одинакова, то конечное состояние пара определяется пересечением горизонтали, проходящей через начальную точку 1 (рис. 80), с изобарой конечного /ишлення р2- Точка 2 определяет все параметры после. фосселпрованн я.  [c.215]

Применение (Н — )S)-диaгpaммы и условия максимального выхода жидкости. (Я — 5 )-диаграмма, дающая зависимось между энтальпией Н и энтропией S для различных изобар и изотерм, уже применялась при вычислении к. п. д. паровых компрессионных машин (см. раздел 2). Такая диаграмма удобна также для определения к. п. д. воздушных ожижителей Линде (а также водородных и гелиевых ожижителей).  [c.57]

Если в ячейке, заключенной между сечениями 0-0 и 1-1, не произощло ни конденсации, ни испарения, то на выходе из ячейки поток имеет массовый расход Е = F ]., общий компонентный состав С,ц = С,п. удельную энтальпию /]i, удельную теплоемкость Си, температуру Т ц, плотность рп, скорость 1Ец = W , определенные из уравнений (4.1.1Ь(4.1.44). Массовый расход эжектируемой среды в этом случае  [c.107]

Блок-схема определения параметров потока парового слоя (с индексом еи) а среды (с индексом см), поступающей в ячейки на место сконденсировавшейся газовой фазы, представлена на рис. 4.10. Если в некоторых ячейках "п" не произошло ни конденсации, ни испарения, т.е. = 0 - (4.2.81), то параметры вьеходящих из таких ячеек потоков, определенные из уравнений (4.2.61) - F n> (4.2.57), (4.2.58), (4.2.61) - W , (4.2.71) или (4.2.75) - С, л- (4.2.74) или (4.2.79) - Т , остаются без изменений и являются результирующими. Если в ячейках "Г произошла конденсация и количество среды из парового слоя оказалось недостаточно для заполнения пространства от сконденсировавшегося газа, т.е. Д < 0 - (4.2.93), то параметры потоков, выходящих из ячеек, рассчитываются следующим образом. Определяются коэффициент (р из выражения (4.2.107), массовый расход среды, заполняющей пространство от сконденсировавшегося газа в данной ячейке Арм/ - (4.2.106), массовый расход потока, выходящего из ячейки (4.2.108), плотность потока р - (4.2.109), скорость И , - (4.2.110), удельная энтальпия / /- (4.2.111), удельная теплоемкость С /- (4.2.112), температура Tul (4-2.113), общий компонентный состав M - (4.2.114). Если в ячейках I произошла конденсация и количество среды из парового слоя оказалось достаточно для заполнения пространства от сконденсировавшегося газа, т.е. А 0 (4.2.93), то параметры потоков, выходящих из ячеек рассчитываются следующим образом массовый расход среды, поступаюЕцей из парового слоя АЕм/ - (4.2.115), массовый расход потока, истекающего из ячейки - (4.2.116), плотность p i - (4.2.117), скорость -(4.2.118), удельная теплоемкость - (4.2.120), удельная энтальпия - (4.2.119), обгций компонентный состав С i - (4,2.121), температура T i - (4.2.122). Если в ячейках "q" произошло испарение, то после выделения в паровой слой части газовой фазы, параметры потоков, выходящих из этих ячеек, рассчитываются из уравнений (4.2.123) - массовый расход (4.2.124) - плотность р , (4.2.125) - общий компонентный состав, остальные параметры потоков, такие как, удельная энта.пьпия l q, удельная теплоемкость С (, температура находятся из системы уравнений (4.1.2>-(4.1.40) (см. блок-схему рис. 4.2.1), скорость Wиз системы уравнений (4.2.57), (4.2.58), (4.2.61).  [c.125]

При создании новых технологий весьма перспективно применение о.хладителей газа с пульсационными струйными течениями 11-71. Преимуществами указанных устройств являются простота конструкции, эксплуатационная надежность и высокий изоэнтропийный к.п.д. охлаждения газа 60-80% [1]. В основе их принципа действия лежит процесс энергообмена между расширяющейся газовой струей, вытекающей из сопла в полузамкнутую емкость и газом, находящимся внутри последней (рис. 7.1). При размещении входного отверстия полузамкнутой емкости на определенном расстоянии от среза сопла и соосно с ним в струе возникают автоколебания [8 , приводящие к сильному акустическому излучению [9, Ю] и к значительному нагреву газа и стенок от него полузамкнутой емкости. От нагретого газа тепло через стенки полузамкнутой емкости передается окружающей среде. Общая энтальпия газа снижается и на выходе из полузамкнутой емкости газ, расширяясь, охлаждается.  [c.175]

Внутренняя энергия и энтальпия определяют запас гшергии в рабочем теле (системе) и имеют в каледом состоянии вполне определенное значение.  [c.45]

На рис. 4.20 показана i — s-диаграмма для воды. Такая диаграмма очень удобна для определения изменения энтальпии в процессе s = onst и широко применяется для расчета процессов теплоизолированного течения, которые характеризуются тем, что приращение кинетической энергии 1 кг движущегося газа равно убыли удельной энтальпии.  [c.139]

Под действительным или эффективным к. п. д. топливного элемента подразумевают отношение произведенной полезной работы L d к убыли внутренней энергии (при постоянных V и Т) или энтальпии (при постоянных р и Т) активных (рабочих) веществ в результате происшедшей в элементе токообразующей реакции. Наибольший практический интерес представляет реакция при р = onst и Г = onst, которая и рассматривается в дальнейшем. Согласно определению (индекс 5 означает действительные значения параметров)  [c.597]


Смотреть страницы где упоминается термин Энтальпия (определение) : [c.248]    [c.106]    [c.278]    [c.187]    [c.29]    [c.400]    [c.121]    [c.142]    [c.495]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.138 ]



ПОИСК



Аппаратура для определения энтальпий разбавления и смешения

Введение. Диаграмма энтальпия — состав. Учет давления при построении диаграммы. Движущие силы и тепловые потоки на диаграмме энтальпия — состав. Определение S-состояния при

Влияние энтальпии среды на коэффициент теплоотдачи при сверхкритическом давлеК определению местных значений коэффициентов теплоотдачи при сверхкритическом давлении

Калориметрическое определение свободной энергии и энтальпии

Методы определения энтальпий смешения и типы калориметров

Окись алюминия — образцовое вещество для высокотемпературных определений энтальпии и теплоемкости

Определение приращений внутренней энергии и энтальпии

Определение приращения свободной энергии и энтальпии

Определение среднемассовых энтальпий, температуры и паросодержания при течении жидкости в трубах

Определение теплового значения калориметра, предназначенного для измерения энтальпий сгорания органических веществ

Определение энтальпии водяного пара при помощи адиабатного дросселирования

Определение энтальпии водяного паря методом калориметрирования и адиабатного дросселироОпределение степени сухости водяного пара Исследование процессов во влажном воздухе

Определение энтальпии дымовых газов

Определение энтальпии продуктов сгорания

Определение энтальпий реакций между двумя твердыми веществами, двумя газами и энтальпий разложения веществ

Определение энтальпий реакций между жидкостью и газом

Определение энтальпий реакций между твердым или жидким веществом и газом

Определение энтальпий реакций, протекающих в жидкой среде

Расчётные формулы для определения энтальпии влажного воздуха

Точность определения энтальпий смешения и стандартные системы для поверки калориметров

Энтальпия

Энтальпия (определение) мольная

Энтальпия жидкостей и газов, экспериментальное определение



© 2025 Mash-xxl.info Реклама на сайте