Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Преобразование Лапласа основные свойства

Преобразование Лапласа. Основные свойства  [c.293]

Каноническое распределение наиболее часто используется в реальных приложениях статистической механики. Это объясняется двумя причинами во-первых, каноническое распределение описывает систему при постоянной температуре, а это условие наиболее легко осуществить в физических экспериментах во-вто-рых, каноническое распределение наиболее удобно для математических преобразований. Ряд основных свойств канонического распределения уже обсуждался в предыдущей главе, но мы снова перечислим их здесь, дополняя некоторыми замечаниями, в особенности относящимися к асимптотической оценке распределения для больших систем. Эти замечания важны для ясного понимания связи между термодинамикой и статистической механикой. Подобные же методы могут быть применены к другим обобщенным каноническим распределениям. Для решения задач группы А этой главы необходимы знания в объеме Основных положений гл. 1 и простейших параграфов настоящей главы, не отмеченных звездочкой ( ) (в частности, такие более сложные вопросы, как преобразование Лапласа и матрицы плотности, не понадобятся).  [c.120]


Анализ вибрации и распространения волн в вязкоупругих композитах проведен в [1]. Причем основное внимание уделено расчету поведения при стационарном гармоническом нагружении. Хорошо известно, что, используя свойство интеграла Фурье, решения для стационарного случая можно применить для расчета поведения при нестационарных воздействиях произвольного вида. Обсудим вкратце этот подход с точки зрения применения к решению задачи алгоритма FFT [20]. В динамическом анализе композитов используются и другие методы, например преобразование Лапласа [1] и метод характеристик [21]. Однако есть основания полагать, что точность и вычислительная эффективность алгоритма РТТ плюс легкость получения стационарного поведения при помощи упругих решений делают этот подход наиболее привлекательным. Здесь представляет интерес также удобство применения численных или очень общих аналитических представлений комплексных модулей (податливостей).  [c.196]

Свойства обратного (по параметру х) преобразования Лапласа, связующего решение нестационарных н стационарных задач, определяются резольвентами задач дифракции. При реализации этой связи методами контурного интегрирования на комплексном многообразии [148, 150] естественно возникает вопрос об особенностях аналитического продолжения резольвенты задачи дифракции с действительной оси. Он рассматривается в рамках спектральной теории решеток, изучающей задачи дифракции при комплексных значениях частотного параметра х [25, 62, 66, 80, 151]. При этом в отличие от традиционных задач дифракции основное внимание уделяется не регулярным точкам х, где соответствующие операторы ограничено обратимы, а дополнительному к ним множеству — спектру, изучению характера особенностей и закономерностей их распределения в комплексном пространстве [152—187].  [c.10]

Подход к определению параметра а состоит в том, чтобы провести оценку суммарной погрешности обращения преобразования Лапласа при помощи ряда Фурье в сравнении с функцией-эталоном, аналитический вид преобразования Лапласа которой известен и по форме похож на вызывающую затруднения функцию [293]. Функция-эталон в известном смысле является вычислительной моделью некоторого идеального процесса, который отражает лишь основные свойства конструкции и явления, происходящие в ней.  [c.291]


В 3.6 излагаются основные положения и свойства интегрального преобразования Лапласа, которое применяется в качестве основного метода решения нестационарных задач теплопроводности.  [c.55]

Ниже изложены без доказательства основные положения и свойства преобразования Лапласа, используемые в дальнейшем при решении ряда нестационарных задач теплопроводности и динамических задач термоупругости. Доказательство приведенных формул можно найти в работе [30].  [c.69]

Приведем основные свойства преобразования Лапласа.  [c.70]

Пользуясь основными свойствами преобразования Лапласа, можно решать простейшие дифференциальные уравнения.  [c.481]

ОСНОВНЫЕ СВОЙСТВА ПРЕОБРАЗОВАНИЯ ЛАПЛАСА  [c.33]

В операционном исчислении доказывается ряд теорем, которыми определяются свойства преобразования Лапласа, применяемые при решении различных прикладных задач. Основные из этих свойств следующие  [c.35]

Функцию Ф(а), являющуюся так называемым преобразованием Лапласа структурной функции х), мы будем называть ведущей функцией системы О, имея в виду ее основоположную роль в нашем аналитическом методе. По этой же причине мы теперь должны будем остановиться на некоторых основных свойствах ведущих функций.  [c.53]

При теоретическом исследовании динамики объекта необходимо, чтобы разложения весовой и переходной функций имели достаточно простой аналитический вид. В этом случае обычно используют методы получения приближенных выражений для g(f) и h(t) с помощью приближенного выражения для самой передаточной функции W(p). Приближенное выражение для W(p) обычно представляет собой конечный отрезок бесконечного ряда, являющегося разложением W(p) по какой-то системе функций. Задача получения обратного преобразования Лапласа от W(p) становится в этом случае очень простой для его решения достаточно осуществить почленный переход к опигиналам в разложении функции W p). Обычно функции, по которым производится разложение W p), выбираются такими, что переход к оригиналам не вызывает никаких затруднений. Фактически, основная сложность в рассматриваемом методе аппроксимации g t) связана с отысканием удобного разложения W p) в ряд и исследованием корректности замены W(p) приближенным выражением в виде конечного отрезка ряда. Выясним, какими свойствами должно обладать это  [c.109]

В данной главе приведены решения скалярных и векторных волновых уравнений для установившихся волновых движений в системах координат, в которых допустимо разделение переменных и которые используются в последуюших главах при изучении дифракционных процессов. Рассмотрены круговая цилиндрическая. эллиптическая цилиндрическая, сферическая, сфероидальная и параболическая цилиндрическая координатные системы. Для первых трех из указанных систем приведены теоремы сложения волновых функций. Даны основные свойства используемых специальных функций. Отметим, что в случае нестационарных процессов в результате применения интегрального преобразования Лапласа по времени волновые уравнения также сводятся к уравнениям Гельмгольца. Следовательно, приведенные в настоящей главе результаты справедливы и для нестационарных задач. Отличие состоит лишь в том, что в нестационарном случае волновые числа будут чисто мнимыми.  [c.28]


Смотреть страницы где упоминается термин Преобразование Лапласа основные свойства : [c.79]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.536 ]



ПОИСК



Лаплас

Мер основные свойства

Преобразование Лапласа

Преобразование Лапласа свойства



© 2025 Mash-xxl.info Реклама на сайте