Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система никель — углерод

При увеличении кон центрации цинка в латуни и олова в бронзе коэффициент диффузии возрастает при постоянном значении Q. В твердых растворах кремния, алюминия, олова, цинка, кадмия и бериллия в меди коэффициент диффузии возрастает почти на порядок при приближении к пределу растворимости. Аналогично изменяется D в системах Аи — Pd и Pd — Ni. В аустените коэффициент диффузии марганца, никеля и углерода зависит от концентрации диффундирующего элемента.  [c.111]


Углерод оказывает значительное влияние на механические и технологические свойства никелевых и медноникелевых сплавов. Диаграмма состояния системы никель — углерод (сторона никеля) показана на рис. 346.  [c.288]

Рис. 346. Диаграмма состояния системы никель — углерод. Сторона никеля Рис. 346. <a href="/info/166501">Диаграмма состояния системы</a> никель — углерод. Сторона никеля
На рис. 61 изображена диаграмма состояния системы никель — углерод, построенная на основании работ [Ь 2]. Растворимость углерода в никеле составляет [3]  [c.492]

Рис. 61. Диаграмма состояния системы никель — углерод Рис. 61. <a href="/info/166501">Диаграмма состояния системы</a> никель — углерод
Нестабильность указанного типа была обнаружена в волокнистых композитах никель — графит [27]. Термоциклирование от 1255 К до комнатной температуры приводит к огрублению графитовых волокон и развитию мостиков между волокнами. В этой системе процесс особенно заметен, так как волокна имеют неровную поверхность с большим числом точек активного радиуса кривизны. Согласно уравнению Томсона—Фрейндлиха, вблизи этих мест содержание углерода в матрице повышено, что приводит к ускоренному ето переносу при высоких градиентах концентрации.  [c.90]

Железо-молибден, система — Диаграмма состояния 3 — 329 Железо-молибден-углерод, система — Изотермическое сечение 3 — 336 Железо-никель, система — Диаграмма состояния 3 — 328 Железо-титан-углерод, система — Изотермическое сечение 3 — 336 Железо-углерод-легирующий элемент, система  [c.77]

Принятая государственными стандартами СССР система обозначения марок стали даёт возможность легко установить химический состав данной марки стали. В этой системе двузначные числа с левой стороны букв в обозначениях марки стали показывают среднее содержание углерода в сотых долях процента, а буквы справа от этих чисел обозначают Г—марганец, С— кремний. X—хром, Н—никель, В — вольфрам, Ф—ванадий, М —молибден, Ю—алюминий цифры после букв обозначают процентное содержание соответствующего элемента в целых единицах. Обозначения марок высококачественной стали, более чистой по сравнению с качественной в отношении серы и фосфора и с повышенными механическими свойствами, дополняются буквой А в конце обозначения.  [c.359]


В контурах с кипением калия выделения растворенных веществ наблюдаются главным образом на границе жидкой и паровой фаз. Выщелачиванию в таких системах подвержены металлические (никель, хром) и неметаллические составляющие материалов (например, углерод в виде карбидов).  [c.293]

Уменьшение низкотемпературной пластичности носит название отпускной хрупкости. Наиболее часто она наблюдается у Сг, Ni, Мо" сталей, используемых для роторов турбин, и Мп, Мо сталей, используемых для корпуса легководных реакторов. Проявляется она в уменьшении ударной вязкости или увеличении температуры хрупкого перехода. Это связано с миграцией определенных элементов, которые занимают соседствующее положение в периодической системе, к границам зерен и проявляется в виде интер-кристаллитного излома. Миграция наблюдается для большинства легирующих элементов, включая углерод, кремний, никель и марганец, но не отмечена для молибдена. Примесные элементы при температуре отпуска находятся в твердом растворе и выделяются по границам зерен при температуре 500° С. Поэтому хрупкости можно избежать при быстром охлаждении стали с температуры отпуска, но это может привести для массивных изделий к появлению высоких, превышающих предел текучести, внутренних напряжений, действие которых может быть более отрицательным, чем сама отпускная хрупкость. Технология ступенчатого охлаждения от температуры отпуска при удачно выбранной температуре ступенек позволяет избежать отпускной хрупкости и в то же время не привести к появлению больших внутренних напряжений. Отпускная хрупкость может быть сведена к минимуму при снижении содержания примесей от 0,01 до 0,001% за счет тщательного выбора скрапа и шлака, а также при использовании очень чистого, например электролитического, железа. Дальнейшее улучшение может быть достигнуто в результате удаления кремния, т. е. при использовании вакуумного раскисления. Трудно расположить элементы в порядке усиления их влияния на отпускную хрупкость, так как некоторые из них используются редко или в таких малых количествах, что их влияние трудно учесть. Проведенные в последние годы исследования позволили получить стали для больших роторов, температура хрупкого перехода которых снижена со 100° до 0°С.  [c.53]

Вакуумирование проводят в ковше из немагнитной стали, установленном в индукторе. Верхняя часть ковша имеет, фланец для герметичного соединения с вакуумной крышкой рис. 96). Крышка патрубком соединяется с вакуумной системой. На одном стенде этой установки расположен свод с тремя электродами, имеется соответствующее электрическое оборудование дуговой печи. Сталь выплавляют в дуговой печи без восстановительного периода. Из легирующих вводят только молибден и никель, контролируют содержание углерода. Шлак перед выпуском удаляют. Сталь выпускают в ковш, который устанавливают в индуктор, закрывают крышкой и вакуумируют. За время вакуумной обработки сталь остывает на 80 °С. В конце дегазации присаживают легирующие. Вакуумную крышку отводят в сторону и ковш  [c.210]

Положение легирующих элементов в периодической системе элементов Менделеева, строение и размеры их атомов. К числу легирующих элементов в стали относятся элементы второго периода — висмут и азот, третьего — алюминий и кремний, четвертого — титан, ванадий, марганец, кобальт, никель и медь, пятого — цирконий, ниобий и молибден, шестого — вольфрам и свинец. Кроме этих элементов, в стали присутствует еще элемент второго периода — углерод.  [c.303]

Одни из них (углерод, азот, никель, марганец, медь и в некоторых случаях кобальт) действуют в сторону образования аустенита, способствуя расширению аустенитной области, а другие (хром, вольфрам, тантал, молибден, титан, ниобий, кремний, ванадий, алюминий) — в сторону образования феррита, способствуя расширению ферритной области. Степень влияния того или иного элемента можно определить, исходя из сопоставления данных по сужению Y-области по сравнению с диаграммой системы Fe—С.  [c.239]

Рис. 247. Влияние марганца и никеля, а также небольших количеств углерода и азота на положение границы, отделяющей 7-область, в системе железо—хром—никель—марганец [199] Рис. 247. Влияние марганца и никеля, а также небольших количеств углерода и азота на положение границы, отделяющей 7-область, в <a href="/info/336133">системе железо—хром—никель</a>—марганец [199]

Критические точки технических сортов стали (даже углеродистой), содержащих примеси, не совпадают обычно по температуре с точками диаграммы состояний системы железо — углерод. Повышенное содержание марганца или никеля позволяет снизить температуру нагрева для закалки стали, а кремний, хром и вольфрам, наоборот, требуют ее повышения.  [c.182]

Результаты изучения автором работы [220] адгезии алмаза к металлам показали, что металлы, наиболее активные к углероду (группы IVA—VIA периодической системы), имеют наименьшую температуру адгезии повышение этой температуры наблюдается на железе и далее на таких металлах, кгк кобальт, никель, платина. Медь и серебро, инертные к углероду, имеют высокую температуру адгезии.  [c.68]

Сталь легированная конструкционная (ГОСТ 4543—71). Поковки из конструкционной стали для ряда деталей современных машин должны обладать высокими механическими свойствами прочностью, вязкостью и сопротивлением усталости. Углеродистая качественная конструкционная сталь иногда не удовлетворяет этим требованиям, так как прочность и твердость растут с повышением содержания углерода в стали, но одновременно с этим уменьшается пластичность и вязкость, повышается хрупкость. Поэтому поковки для ответственных деталей изготовляют из легированных сталей, обладающих повышенными механическими свойствами. Марки низколегированных и легированных конструкционных сталей обозначаются по буквенно-цифровой системе. Для маркировки этих сталей принято легирующие элементы обозначать буквами X — хром, Н — никель, Г — марганец, С — кремний, М — молибден, В — вольфрам, Ф — ванадий, К — кобальт, Т — титан, Ю — алюминий. Марганец и кремний являются легирующими, если содержание в стали первого более 1 % и второго — не менее 0,8%.  [c.136]

Для маркировки легированных сталей установлена буквенно-цифровая система. Легирующие элементы в марках стали обозначаются следующими буквами А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, М — молибден, Н — никель, Р — бор, С — кремний, Т — титан, Ф — ванадий, Ю — алюминий, К — кобальт, X — хром, Ц — цирконий. Цифры перед буквенным обозначением марки стали указывают среднее содержание углерода в сотых или десятых долях процента. После цифр ставят буквы, обозначающие легирующие элементы, входящие в состав данной стали. Цифры, стоящие после букв, указывают примерное содержание легирующего элемента в целых единицах. Букву А (азот) ставить в конце обозначения марки не допускается.  [c.25]

Система никель—хром—углерод. В порошковую смесь (80 % Ni — 20 % Сг) -(0,5...1,0) (где - аморфный углерод, продукт пиролиза парафина) вводили сравнительно крупнозернистый ( 50 мкм) порошок графита МГОСЧ в количестве до 10 %. На рис. 6.3 представлена зависимость изменения объема образца (AV/V) от содержания углерода в порошковой смеси. Резкое ухудшение спекаемости при увеличении содержания углерода связано, по-видимому, с изменением количества карбидов в спеках. Нарушение монотонного изменения AV/V, проявляющееся при содержании углерода 2,5 %, связано с появлением в образцах свободного углерода в виде графита.  [c.434]

Сплавы, содержащие никель и медь. Сплавы системы никель-медь, хотя и не обладают такой же кислотостойкостью, как. материалы, содержащие молибден, широко и успешно применяются в контакте со слабыми растворами серной кислоты (напри.мер для держалок в травильных ваннах), особенно та.м, где требуется стойкость одновременно против износа и коррозии. М о н е л ь - м е т а л л — сплав, получаемый из руды, содержащей никель и. медь в желательном соотношении, без разделения двух этих металлов. Монель-металл состоит приблизительно из 67% никеля и 30%. меди содержание прочих эле.ментов строго контролируется в таких пределах, чтобы получить материал с требуемыми свойствами. Эти элементы обычно марганец (1,25%) и железо (1,25%), а также небольшие количества углерода и кре.мния Можно, конечно, приготовить этот сплав синтетически, но Бауер, Вкртс и Вол-ленбрук указывают, что этот синтетический материал будет по свои.м качествам одинаков с естественны. 1 монель-.металлом лишь в том случае, если весь углерод будет находиться в твердом растворе в противно.м случае ыол ет развиться коррозия за счет частиц графита. Даже в соляной кислоте  [c.480]

Растворяться в железе в значительных количествах может большинство легируюшн.х элементов, кроме углерода, азота, кислорода и бора и металлоидов, удаленных в периодической системе от железа. Элементы, расположенные в периодической системе левее железа, распределяются между железом (основой) и карбидами элементы, расположенные правее железа (кобальт, никель, медь и другие), образуют только растворы с железом и не входят в карбиды.  [c.349]

Никель образует с углеродом метаотабильный кардиб №зС. В системе С—Ni имеется эвтектика. Максимальная растворимость углерода в никеле в твердом состоянии около 0,55%. Легирование чугуна никелем способствует стабилизации аустенита и расширяет область v-Fe.  [c.73]

Одним из способов достижения высокой вязкости разрушения сплавов на основе железа, предназначенных для криогенной техники, является снижение концентрации охрунчивающих примесей (углерода, кислорода и азота) путем введения химически активных (поглощаюших) элементов, которые будут связывать указанные примеси. Были опробованы добавки одиннадцати активных металлов в системе Fe—I2Ni, включая А1, Hf, La, мишметалл, Nb, Si, Та, Ti, V, Y и Zr. Предварительные исследования [2] показали, что AI, Nb, Ti и V наиболее эффективно повышают вязкость разрушения. Для наиболее подробного исследования в качестве оптимального варианта химически активного элемента был выбран алюминий. Задачами исследования были оптимизация содержания никеля и алюминия, изучение влияния примесей, механизмов упрочнения и свариваемости.  [c.251]

В обозначении марок легированных сталей принята такая система, при которой двузначные числа с левой стороны обозначают среднее содержание углерода в сотых долях процента. Буквы справа от этих цифр обозначают X — хром, Н — никель. Si — кремний, М — молибден, Ф — ванадий, В — вольфрам, Ю — алюминий. Цифры после букв обозначают процентное содержание соответствующего элемента. Например, марка 12ХНЗА означает, что сталь содержит углерода 0,12 /о, хрома —около 1 /о, никеля — около 3 /о (буква без цифр обозначает присадку до Р/о). Буква А , стоящая в конце обозначения марки, указывает на принадлежность стали к высококачественным материалам,  [c.149]


Эти сплавы обладают высоким электросопротивлением, небольшим температурным коэфициентом электросопротивления и высокой жаростойкостью. Кроме никеля и хрома, в эти сплагы вводятся и другие элементы железо до 25—ЗООф (для замены никеля и облегчения механической обработки) молибден до 7<>/q (повышает удельное электросопротивление и жаростойкость), марганец до 4% (раскислитель, десульфуризатор и дегазификатор). Углерод вреден, так как он увеличивает хрупкость и уменьшает жаростойкость нихромов. Содержание его ограничивается по стандарту 0,25<>/о. Никель и хром обладают ограниченной растворимостью в твёрдом состоянии. При эвтектической температуре 1320° С в никеле растворяется 46% Сг и при комнатной температуре 35%. В тройной системе N1 — Сг — Fe в никелевом углу имеется обширная область тройного твёрдого раствора (фиг. 212).  [c.225]

Легирующие элементы оказывают большое влияние на точку Л,, соответствующую температуре перехода перлита в аустенит (рис. 93, а). Никель и марганец снижают температуру А , а Т1, Мо, 31, У и другие элементы повышают температуру Л1 (см. рис, 93, а). Легирующие элементы уменьшают эвтектондную концентрацию углерода (рис. 93, б) к предельную растворимость углерода в аустените, сдвигая точки 5 к на диаграмме состояния Ре—С влево. Как видно из рис. 94, где приведены вертикальные разрезы тройной диаграммы состояния Ре—Мп—С и Ре—Сг—С, перитектическое, эвтектическое и эвтектоидное превращения протекают не при постоянной температуре, как в двойных системах, а в некотором интервале температур. В системе р е—Мп.—С у-фаза с увеличением содержания марганца существует и в области более низких температур. В системе Ре—Сг—С с возрастанием концентрации хрома область существования у-ф>ззь( сужается. Состав карбидной фазы (К) в марганцовистых сталях соответствует соединению (РеМп)8С, в котором часть атомов железа. замещена атомами марганца. В хромистых сталях образуются (Ре, Сг)зС и специальные хромистые карбиды, состав и структура которых зависят от содержания углерода и хро.ма. При низком содержании углерода и высоком содержании хрома образуются ферритные стали, не претерпевающие полиморфного превращения (рис. 94, б).  [c.137]

Описаны сплавы кремния с сурьмой, висмутом, кобальтом, эологгом, свннцом, серебром, оловом и цинком [461. В двойных системах кремния с указанными металлами не обнаружено никаких соединений. Получены также сплавы с алюминием (47, 71. Сплавы на основе железа можно покрывать кремнием или сплавлять с ним [59]. Отливки из сплавов железа с высоким содержанием кремния (15 )о) стойки против коррозии, однако они не поддаются обработке резанием. Эти и другие сплавы кремнии и железа, а также кремния, углерода и железа подробно изучались Грейнером и сотр. [331. Те же авторы рассматривают кремнистые и кремнсмаргание-вые стали, в том числе стали, которые содержат также никель, молибден, хром и ванадий.  [c.338]

МВКМ Ni - С(волокна). Никель практически не растворим в углероде. В системе Ni - С образуется метастабильный карбид Ы1зС, устой-  [c.116]

В основу маркировки легированных сталей положена буквенно-цифровая система (ГОСТ 4543-71), Легирующие элементы обозначаются буквами русского алфавита марганец - Г, кремний - С, хром - X, никель - Н, вольфрам - В, ванадий - Ф, титан - Т, молибден - М, кобальт - К, алюминий - Ю, медь - Д, бор - Р, ниобий - Б, цирконий - Ц, азот - А. Количество углерода, как и при обозначениях углеродистых сталей, указывается в сотых долях процента цифрой, стоящей в начале обозначения количество легирующего элемента в процентах указывается цифрой, стоящей после соответствующего индекса. Отсутствие цифры после индекса элемента указывает на то, что его содержание менее 1,5 %. Высококачественные стали имеют в обозначении букву А, а особовы-сококачественые - букву Ш, проставляемую в конце. Например, сталь 12Х2Н4А содержит 0,12 % С, около 2 % Сг, около  [c.19]

Растворно-осадительный механизм роста, приводящий к необратимому увеличению объема вследствие развития диффузионной пористости, изучен применительно к графи-тизированным сплавам железа, никеля и кобальта. С углеродом указанные металлы образуют растворы внедрения и сильно различаются от него коэффициентами диффузии. Большое различие в диффузионной подвижности имеет место и в сплавах других металлов и неметаллов. Но при гермоциклировании этих сплавов, когда многократно повторяются процессы растворения и выделения избыточных фаз, накопление пор не обнаруживается. Число изученных систем невелико, но по крайней мере в микроструктуре термоциклиронанных твердых растворов на основе хрома и никеля, меди и титана, алюминия и меди, алюминия и кремния и некоторых других поры не выявлены. В указанных системах. компоненты образуют растворы замещения ч в них реализуется вакансионный механизм диффузии.  [c.98]

Автор кратко рассмотрел влияние на свойства жаропрочных сталей и сплавов осгшвных легирующих элементов — никеля и хрома, а также наиболее энергичных аустенитизаторов — азота, бора, углерода. Марганец, как уже отмечалось, в качестве аусте-нитизатора действует примерно вдвое слабее никеля. Поэтому при введении больших количеств марганца в состав жаропрочных сталей рекомендуется одновременно повышать содержание в них углерода или азота. По нашим данным весьма полезен в данном случае и бор. Сам по себе марганец, естественно, не повышает жаропрочности аустенитных сталей. Для максимального упрочнения твердого раствора Fe—Сг—Мп его легируют молибденом, вольфрамом, ниобием, ванадием, титаном [371 в присутствии углерода с азотом. В высокожаропрочных сплавах на никелевой основе содержание марганца обычно сильно ограничивают, например до 0,3—0,5%. Возможно, это связано с относительной легкоплавкостью (см. рис. 78, в) и малой жаропрочностью сплавов системы Ni—Мп. Правда, в последнее время в состав никелевых сплавов типа инконель вводят до 10% Мп [42].  [c.45]

Из раздела IV следует, что поиски приемлемой композиции на основе никеля, армированного сапфировыми волокнами, не были особенно плодотворными. Хотя авторы не могут согласиться с тем, что эта система бесперспективна, путь к реализации свойств, предсказываемых правилом смеси, изобилует трудностями. Многие из них, безусловно, являются общими для всех композиций с металлической матрицей, армированной хрупкими керамическими волокнами и тем не менее несколько представляющих практический интерес материалов этого класса уже изготовляются и имеют свойства, которые внушают оптимизм в отношении перспектив использования и других систем, включая систему Ni—AI2O3. Например, в настоящее время уже широко используются в аэрокосмических конструкциях боралюминиевые композиции, а композиции титан — бор и алюминий — углерод исследуются с точки зрения возможности применения в этих же областях.  [c.232]

Данные о металлах, совместимых с углеродными волокнами, приведены в табл. 4. Семь первых элементов из перечисленных в таблице, особенно никель, кобальт и рений, представляют особый интерес благодаря своей высокой термической стабильности в контакте с углеродом, являющейся следствием ограничепной растворимости углерода в этих металлах в твердом состоянии, отсутствия реакции карбидообразования и весьма высокой эвтектической температуры в этих системах.  [c.358]

Величина краевого угла смачивания зависит от температуры, а также от налнчи [ примесей, адсорбированных на углеродной подложке или находящихся в жидком металле. Найдич и др. [68—70] отмечают, что из металлов, перечисленных в табл. 4, только никель, кобальт и палладий имеют в контакте с углеродной подложкой значение краевого угла смачивания —50—70°, т. е. смачивают подложку, причем при насыщении расплавов углеродом величина краевого угла возрастает примерно в 1,5 раза, что может привести уже к отсутствию смачивания в системе.  [c.359]


К отдельному обширному классу относятся износоустойчивые металлические покрытия, пригодные к службе как при нормальных, так и при сравнительно высоких температурах. Они состоят из углеродистых сплаврв железа, никеля или кобальта с металлами (например, Ш, Сг, Мо, V, Т1, Мп), которые, образуя карбиды, придают системам высокую твердость и значительную устойчивость против абразивного износа. В их состав в небольших количествах входит также кремний. Покрытия, содержащие свыше 3,5% углерода или более 3% кремния и 0,5% бора, отнесены к типу металлоподобных и будут рассмотрены ниже.  [c.102]

Для обозначения марок сталей принята буквенно-цифровая система. Элементы, входящие в состав металлов и сплавов, условно обозначают следуюши.ми буквами Ю — алюминий, Р — бор, Ф — ванадий, В — вольфрам, С — кремний, Г — марганец, Д — медь, М — молибден, Н — никель, Б — ниобий, Т — титан, У — углерод. П — фосфор, X — хром. Цифры показывают содержание углерода и легирующего компонента. Первые две цифры в начале обозначения показывают среднее содержание углерода в сотых долях процента. Цифры, стоящие после буквы, указывают примерное содержание легирующего компонента (в целых процентах), который данная буква характеризует. Если содержание компонента меньще или около 1%, то цифра отсутствует, если содержание компонента около 1,5%, то ставится цифра 1, около — 2% — цифра 2 и т. д.  [c.204]


Смотреть страницы где упоминается термин Система никель — углерод : [c.486]    [c.433]    [c.435]    [c.158]    [c.28]    [c.87]    [c.369]    [c.133]    [c.252]    [c.80]    [c.150]    [c.97]    [c.231]    [c.391]    [c.14]   
Металловедение и термическая обработка (1956) -- [ c.349 ]



ПОИСК



Никель

Никель углерод

Система железо — углерод — никель

Углерод

Углерод— углерод



© 2025 Mash-xxl.info Реклама на сайте