Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Азотированная сталь структура и свойства

Азотированная сталь структура и свойства 635, 636 Алитирование 379  [c.1192]

На опытно-промышленной установке (см. рис. 65) изучалось влияние основных технологических факторов ионного азотирования на структуру и свойства диффузионных слоев сталей перлитного, мартенситного и аустенитного классов.  [c.121]

Процессы химико-термической обработки (ХТО) заключаются в сочетании термического и химического воздействия в целях изменения состава, структуры и свойств поверхностного слоя стали. При ХТО происходит насыщение поверхности стали различными химическими элементами за счет диффузии, проникновения в кристаллическую решетку железа атомов этих элементов. Этот процесс происходит при нагреве стальных деталей в газовой, жидкой или твердой среде, богатой этими элементами. Наиболее распространены следующие виды ХТО цементация, азотирование, цианирование, диффузионная металлизация и т. д.  [c.142]


Твердость можно измерять на деталях небольшой толщины, а также в очень тонких слоях, не превышающих иногда десятых долей миллиметра, или в микрообъемах металла (измерения микротвердости). Поэтому путем измерения твердости можно оценивать различные по структуре и свойствам слои металла, например поверхностный слой цементированной, азотированной или закаленной стали, имеющей разную твердость по сечению детали. Путем определения микротвердости можно измерить твердость отдельных структурных составляющих в сплавах.  [c.24]

Среди методов ХТМ наибольшим преимуществом обладает ионное азотирование инструментов из быстрорежущих сталей. В этом случае возможно получение покрытий с минимальными деформациями инструмента при высокой скорости насыщения азотом (в плазме тлеющего разряда) и регулирования структурой и свойствами нитридных слоев. Эффективность быстрорежущих инстру-  [c.9]

Твердость можно измерять на деталях небольшой толщины, а также в очень тонких слоях металла, не превышающих (для некоторых способов измерения твердости) десятых долей миллиметра, или в очень небольших объемах (микрообъемах) металла в последнем случае измерения проводят способом микротвердости. Поэтому многие способы измерения твердости пригодны для оценки различных по структуре и свойствам слоев металла, например поверхностного слоя цементованной, азотированной или закаленной стали, имеющей разную твердость по сечению детали. Методом определения микротвердости можно также измерять твердость отдельных составляющих в сплавах.  [c.146]

Если требуемые свойства в выбранном сплаве могут быть получены в результате термической или химико-термической обработки, то необходимо указать режимы обработки, получаемую структуру и свойства. При рекомендации режимов обработки необходимо указывать наиболее экономичные и производительные способы, например для деталей, изготовляемых в больших количествах, обработку с нагревом токами высокой частоты, газовую цементацию (при необходимости химико-термической обработки) и др. Для деталей, работающих в условиях переменных нагрузок, например для валов, зубчатых колес многих типов, необходимо рекомендовать обработку, повышающую предел выносливости (в зависимости от рекомендуемой стали к ним относятся цементация, цианирование, азотирование, закалка с нагревом ТВЧ, обработка дробью).  [c.371]

Структура и свойства азотированной легированной стали.  [c.290]

Структура и свойства азотированной углеродистой стали. При диффузии азота в железо на поверхности его последовательно образуются фазы, располагающиеся следую- Фазовый  [c.627]


Хорошие результаты дает азотирование нержавеющей и жароупорной стали. Замечательные антифрикционные свойства обнаруживает азотированная поверхность графитизированной стали, т. е. стали, имеющей в структуре графит. Она отличается высокой твердостью и износостойкостью вместе с тем графит удерживает смазку и понижает коэффициент трения, что очень важно для гильз цилиндров, втулок и подшипников.  [c.285]

Производство поршневых колец. Для увеличения срока службы поршневых колец, а следовательно, и самих двигателей применяют различные технологические методы пористое хромирование, легирование чугуна, азотирование, изготовление колец и чугуна со сфероидальными графитом и из литой графитизированной стали. Установлено, что структура металла кольца должна представлять собой мелкопластинчатый или сорбитообразный перлит допускается феррит в виде отдельных зерен не более 5% поля зрения на шлифе структурно свободный цементит не допускается. Именно такая структура обеспечивает удовлетворение требований, предъявляемых к поршневым кольцам высоких механических свойств (сохранение формы кольца при надевании его на поршень), достаточной упругости кольца, высоких антифрикционных свойств и сопротивления износу при работе в паре со стенками цилиндра. Производство литых колец из чугуна с последующей механической обработкой требует более десяти машинных операций, во время которых до 90% металла теряется в стружку.  [c.437]

Перед механической обработкой и азотированием детали следует подвигать закалке и отпуску, в результате чего механические свойства их значительно улучшаются и сталь получает сорбитную структуру.  [c.287]

ТОГО, твердость и износостойкость азотированных деталей не меняются после нагрева (отпуска) до 500", тогда как у цементованных деталей твердость начинает понижаться при отпуске выше 200°. Механические свойства сердцевины у азотированных деталей также выше, чем у цементованных, причем в результате низкой температуры азотирования эти свойства не изменяются. Перед механической обработкой и азотированием детали следует подвергать закалке и отпуску, в результате чего механические свойства их значительно улучшаются, и сталь получает сорбитную структуру.  [c.270]

Цементация, азотирование, цианирование, диффузионная металлизация и другие аналогичные процессы относятся к химико-термическим видам обработки стали, при которых изменяются химический состав, структура металла, а также его механические свойства особенно сильно в поверхностном слое.  [c.449]

Конструкционные стали могут быть легированы одним, двумя, тремя и более элементами. Однако важнейшей присадкой, определяющей структуру, свойства и область применения конструкционных сталей, является углерод. Легированные конструкционные стали делят на цементируемые и улучшаемые. К первой группе относятся низкоуглеродистые стали (до 0,2 и даже до 0,3% С), а ко второй— среднеуглеродистые стали (с содержанием углерода 0,3—0,6%). Детали, изготовленные из сталей первой группы, подвергают химико-термической обработке — цементации и цианированию, а из второй — улучшению (закалке с высоким отпуском) или азотированию.  [c.168]

Рассмотрим результаты исследования влияния азота и углерода на фазовый состав, структуру и свойства сталей. Выплавка сталей производилась в высокочастотной индукционной печи с магнезитовой футеровкой иод слоем основного шлака. Шихта состояла из армко-железа, иауглероженного армко-железа, металлического хрома, металлического марганца и электролитического азотированного марганца. Слитки весом 1,5 кг, отлитые в изложнице, гомогенизировались при 1150°С в течение 10 ч и ковались ца заготовки диаметром  [c.102]

Химико-термическая обработка, при которой изменяются химический состав, структура и свойства поверхностного слоя. Как и поверхностная закалка, производится для придания поверхностному слою высокой твердости и износостойкости при сохранении цязкой сердцевины. Основные виды химико-термической обработки следующие а) цементация, заключающаяся в насыщении углеродом поверхности детали, изготовленной из малоуглеродистой стали, последующих закалке и отпуске б) азотирование, при котором поверхность детали насыщается азотом, образующим химические соединения (нитриды) с железом, хромом, молибденом, алюминием и другими элементами. Процесс эффективен при азотировании легированной стали, имеющей указанные прнмесн, например стали 38ХМЮА в) цианирование — одновременное насыш,ение поверхности углеродом и азотом.  [c.33]


Для повышения износостойкости изделий из стали 1Х11МФ разработан способ азотирования [654] и исследовано влияние длительной выдержки при 570° С на изменение структуры и свойств поверхностного слоя 1653].  [c.141]

В некоторых отраслях техники для отдельных деталей, главным образом для трущихся пар, требуется сочетание высокой износостойкости и высокой коррозионной стойкости. Указанным требованиям наиболее полно удовлетворяют нержавеющие стали, подвергнутые химико-термической обработке, в частности азотированию. В результате азотирования изменяется структура и состав поверхностного слоя нержавеющих сталей, что влечет за собой изменение его твердости, износостойкости, теплостойкости, маг-нитности и коррозионных свойств.  [c.118]

К методам первой группы относятся химико-термические методы образования покрытий (ХТМ), основанные на твердофазовом, жидкостном и газофазовом насыщении поверхностей инструмента. Диффундирующие элементы могут насытить поверхности инструментов непосредственно, без промежуточных реакций либо с предшествующей химической реакцией на границе между инструмен-уальным материалом и покрытием, или же в объеме исходных реагентов. ХТМ включает такие методы, как насыщение поверхности инструментальных сталей азотом и углеродом в газофазовых и жидких средах, ионное азотирование и цементация в плазме тлеющего разряда, борирование, интрооксидирование и др. (см. рис. 2). В результате насыщения диффундирующими элементами инструментального материала образуются диффузионные слои, кристаллохимическое строение и свойства которых сильно отличаются от соответствующих параметров инструментального материала. Эти элементы улучшают его поверхностные свойства. Скорость образования, кинетика роста покрытия, его структура и свойства в значительной степени определяются температурой процесса, временем насыщения, параметрами диффузии насыщающих компонентов в инструментальном материале и, наконец, существенно зависят от химического состава, структуры и свойств последнего.  [c.9]

Эффективными методами 1юв1.ииения износостойкости и механических свойств сталей и чугунов являются термическая и химикотермическая обработка(цементация, азотирование, нитроцементация, цианирование, сульфидирование, борирование), легирование хромом, никелем, марганцем, вольфрамом, молибденом, ванадием. Применение названных методов позволяет существенно изменять структуру, а следовательно, и свойства сплавов, особенно свойства (юверхностных слове, в желаемом направлении.  [c.14]

Исследований показали, что а -у превращение наблюдается только в сплавах, содержащих 2% А1. Критические точки A i и Ас, оказались равными 745—780 С и 845—885 С. Закалка этих сплавов производилась с температуры 900° С. Остальные сплавы после отжига hm jih структуру феррит -f карбиды и интер-металлиды. Упрочнение этих сплавов при термической обработке (закалка, старение) вызывается дисперсионным твердением, а возможно и упорядочением. Были исследованы их структура и механические свойства после закалки с разных температур (820—1100° С) и установлена температура закалки. Поскольку стали предназначены для азотирования, в таблице приведены свойства после закалки и ложного азотирования.  [c.185]

Прй всех различиях, существующих в составе и структуре закаленной, облагороженной и высокопрочной стали, ее поведение при электролитическом покрытии одинаково, например в отношении водородной хрупкости (см. стр. 160). В этой работе не говорится о процессах, возникающих при закалке (обычная закалка, поверхностная закалка сильно углеродистых сталей, цементация или азотирование слабоуглеродистых сталей) и при-улучшении стали термообработкой, а также о возникающих при зтом структурных изменениях. Однако в рамках гальванотехники имеют значения те изменения механических свойств, которые эти стали получают в процессе покрытия или при сопутствующих предварительной или последующей обработках. Почти всегда при этом ухудшаются показатели прочности (предел прочности на растяжение, прочность на знакопеременный изгиб и т. д.) эти ухудшения следует отнести главным образом за счет водорода, проникшего в металл в результате диффузии. Естественно, что такое поглощение водорода (рис. 137) имеет место-не только у названных выше сталей, но и у всех сталей вообще. У закаленных, облагороженных и сталей высокой прочности по-глощелие водорода оказывается особенно неприятным, так как эти стали подвергаются действию повышенных механических напряжений.  [c.340]

Термической обработкой стали называется процесс преобразован -металла для из.менения его структуры, еханических и фнзическ. л свойств. Различают термическую (закалка, нормализация, отжиг, >)т-пуск) и химико-термическую (цементация, азотирование, цканирой . ние и др.) обработку. Свойства стали определяются структурой, кс с-рая зависит от температуры нагрева и охлаждения.  [c.25]

Легированными сталями называются стали, содержащие в своем составе, кроме обычных элементов, еще и специальные примеси хром, вольфрам, кобальт, никель, ванадий, молибден, титан, алюминий и медь — или же имеющие увеличенное содержание марганца и кремния. Каждый из легирующих элементов в отдельности сообщает стали особые свойства. Например, хром способствует уменьшению зерна, увеличивает прочность, твердость, износостойкость, жаростойкость, стойкость, против коррозии и прокаливаемость стали. Никель повышает прочность, вязкость, жаростойкость и сопротивляемость коррозии. Вольфрам придает стали красностойкость и увеличивает прокаливаемость стали. Молибден повышает прочность, твердость и жароустойчивость, но снижает пластичность и вязкость. Кобальт повышает прочность и пластичность. Кремний при содержании его свыше 0,8% повышает упругость, прочность и твердость, но снижает ударную вязкость. Л1арганец при содержании свыше 1 % повышает прочность и твердость, увеличивает прокаливаемость и несколько снижает ударную вязкость. Титан придает сталям твердость и способствует образованию мелкозернистой структуры. Алюминий повышает жароустойчивость и способствует созданию хороших условий для азотирования стали. Медь повышает устойчивость против коррозии и против действия кислот.  [c.15]


Высокой износоустойчивостью обладают также стали, подвергнутые цементации, цианированию, азотированию, борироваиию, хромированию и другим процессам химико-те1рмической обработки, создающим твердые, износоустойчивые поверхностные слои. Особого рода износоустойчивостью в условиях ударных сминающих нагрузок отличается сталь аустенитного класса и прежде всего высокомарганцовистал сталь Г12. Износоустойчивостью наряду с высокими антифрикционными свойствами характеризуется графитизированная сталь и перлитные чу-туны. Белые чугуны и твердые сплавы, в структуре которых главную роль играют твердые карбиды, отличаются высокой износоустойчивостью при абразивном истирании.  [c.807]


Смотреть страницы где упоминается термин Азотированная сталь структура и свойства : [c.167]    [c.1024]    [c.287]    [c.62]    [c.199]   
Металловедение и термическая обработка (1956) -- [ c.635 , c.636 ]



ПОИСК



Свойства с а-структурой

Сталь Свойства

Сталь азотированная

Сталь структура

Структура и свойства сталей



© 2025 Mash-xxl.info Реклама на сайте