Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные молекулы удвоение типа

Как мы видели ранее, если для перпендикулярного колебания (тип симметрии П) Б линейной молекуле возбужден один квант, то в качестве двух составляющих движения мы можем выбрать либо а) колебания в двух взаимно перпендикулярных плоскостях, либо б) круговые колебания по часовой стрелке и против часовой стрелки вокруг оси симметрии (см. фиг. 27, а) с моментами количества движения 1== . Если в первом случае молекула вращается, то при колебании в плоскости aJ, параллельной оси вращения, не будет происходить изменения момента инерции молекулы, пока колебания являются гармоническими, так как ядра движутся параллельно оси вращения. Однако для колебания, совершающегося в плоскости а -, перпендикулярной оси вращения, момент инерции относительно оси будет изменяться, так как он слагается из начального момента инерции и момента инерции относительно оси симметрии молекулы (который для смещенной конфигурации молекулы не равен нулю). Таким образом, для двух составляющих колебаний следует ожидать несколько отличающихся между собой эффективных значений постоянной В. Если применять схему б), то при колебании атомов вокруг оси симметрии мы получим по существу такую же картину, как и для молекулы со слегка изогнутой равновесной конфигурацией, т. е. мы получим слегка асимметричный волчок, для которого снято вырождение уровней с характерное для соответствующего симметричного волчка, причем расщепление этих уровней увеличивается с увеличением вращательного квантового числа J (см. фиг. 18). В данном случае К идентично I. Таким образом, согласно любой из схем, а) или б), мы должны ожидать удвоения на основании того, что при смещении атомов молекула становится слегка асимметричным волчком.  [c.406]


Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]

Надо подчеркнуть, что при этом расщепляется только компонента (+ ) (фиг. 36, б) компонента (—I) имеет тип Е и поэтому не может расщепляться ни в каком приближении. Следует также заметить, что если в молекуле XYg атом Y имеет ядерный спин 1/2 (т. е. если Y = Н), то поочередно отсутствуют то верхний, то нижний уровни Z-дублетов, так как появляются только уровни Л2 (фиг. 36). В принципе расщепляются также уровни —I) при К = 2, (+Z) нри А = 4 и т. д., но, как и в случае -удвоения состояний А, Ф,. .. линейных молекул, это удвоение появляется только в гораздо более высоком приближении и пропорционально соответствующим более высоким степеням J (J 1). Это относится и к дублетам А , А невырожденного колебательного уровня при К = 3 (фиг. 36, а).  [c.97]

В случае молекул точечной группы 1)зн, а также аналогичных молекул с плоскостью симметрии, перпендикулярной оси третьего или более высокого порядка, в отдельных ветвях подполосы (+/), К = 1 происходит чередование интенсивности, так как уровни Л) и Л 2 имеют различные статистические-веса в зависимости от величины ядерного спина одинаковых ядер. Однако-в каждой из двух ветвей, на которые расщепляется данная ветвь из-за удвоения -типа, чередование интенсивности происходит противоположным образом. Поэтому чередование интенсивности не будет наблюдаться до тех пор, пока не будут разрешены компоненты атого удвоения. Если в ветвях такой пары отсутствуют чередующиеся линии, то в результате будет наблюдаться одна ветвь с одиночными линиями, но с колебанием вращательной структуры аналогично тому, как это происходит в полосах П — П симметричных линейных молекул с нулевым ядерным спином одинаковых ядер. Амплитуда изменения интенсивности при чередовании зависит от числа одинаковых ядер и их спина точно так же, как в подполосах с К = О переходов А — А (см. выше).  [c.239]


Практическое использование формул (6.14) и (6.15) затрудняется громоздкостью выражений, связывающих вращательные и центробежные постоянные и константы удвоения с молекулярными параметрами. В [58, 59] предложено использовать для вывода этих выражений ЭВМ, получены формулы и проведен анализ спектра молекулы СО2. В спектрах линейных молекул существенную роль играют колебательные случайные резонансы типа Ферми.  [c.178]

Помимо А/)-эффекта, в полосах типа П — 2 изогнуто-линейного перехода существует удвоение ЛГ-типа, обусловленное тем, что в изогнутой конфигурации молекула является асимметричным волчком. Это удвоение  [c.194]

Снова нужно рассмотреть возмущения типа Ферми и Кориолиса, каждое из которых может вызвать колебательные или вращательные возмущения. Взаимодействовать могут только уровни с одинаковой полной симметрией, с одинаковыми числами J и с ААГ=0, 1. За исключением отличия в типах симметрии, рассуждения совершенно аналогичны нашим прежним рассуждениям для случаев линейных молекул. Однако нужно учитывать, 410 вращательные уровни Е не могуг быть расщеплены каким бы то ни было взаимодействием врап1ения и колебания (см. Вильсон [934]). В отличие от действия сил Кориолиса, рассмотренного выше, которое приводит к расщеплению вырожденных колебательных уровней при увеличении числа К и является эффектом первого порядка, кориолисовы возмущения, рассматриваемые нами сейчас, являются эффектами второго и более высоких порядков, так как они обусловлены взаимодействием двух различных колебаний в результате наличия сил Кориолиса. Как и для линейных молекул, в данном случае этот эффект обычно весьма мал. Для молекул, принадлежащих к точечной группе Сщ, из правила Яна, приведенного ранее (стр. 404), сразу вытекает, что возможны кориолисовы возмущения между колебательными уровнями Ai и Е, А-, и Е, Ai я А , Е и Е. Для первых двух пар уровней возмущение должно возрастать с увеличением числа J, для последних двух пар оно должно возрастать с увеличением числа К. До сих пор ни один из подобных случаев не изучался подробно. Частным случаем таких возмущений является удвоение типа К, рассмотренное выше, т. е. расщепление уровня с данным J и при условии, что типы полной симметрии двух составляющих уровней являются  [c.443]

Кориолисово расщепление вращательных уровней. Мы видели выше, что каждый вращательный уровень с заданным значением J состоит из ряда подуровней (всего из I подуровней). В том приближении, в котором справедливы формулы (4,77) и (4,78), эти подуровни совпадают друг с другом. Однако если принять во внимание более тонкие взаимодействия вращения и колебания, то происходит расщепление по причинам, аналогичным причинам, вызывающим /-удвоение уровней в линейных молекулах (см. стр. 406). Однако расщепление может произойти лишь на такое число уровней, со слегка отличной друг от друга энергией, которое равно числу различных яиний на фиг. 138. Дважды вырожденные вращательные подуровни типа Е и трижды вырожденные вращательные подуровни типа F не расщепляются на две или соответственно три компоненты, так как все рассматриваемые более тонкие взаимодействия имеют тетраэдрическую симметрию. Этот тип вырождения мог бы быть снят только внешним полем.  [c.480]

Р , Ру, Р , Р , Р-, Р , составляю Цие индуцироианного дипольного момента 263 Р , Ру. P . операторы полного момента количества движения 226. 403, 431 P , составляющая полного момента количества движения ikj оси волчка 36, 38 PQR, структура ветвей параллельных полос симметричных волчков 448 (], постоянная удвоения типа I 407, 419, 423 q , координаты смещения 86, 222 Q, ветвь в инфракрасных полосах асимметричных волчков 501, 507, 511, 514 линейных молекул 409, 414, 415, 417  [c.637]

Если бы не было эффектов более высокого порядка, уровни Ai и А2 при данных J ж К имели бы одинаковую энергию точно так же, как две компоненты уровней с данным J в электронно-колебательном состоянии П линейной молекулы. Когда возбуждено вырожденное колебание v , из-за кориолисова взаимодействия или просто из-за колебательно-вращательного взаимодействия возникает расщепление уровней на две компоненты, которое называется -удвоением, несмотря на то что в молекулах типа симметричного волчка в отличие от линейных молекул момент количества движения (колебательный) равен не (hl2n), а Сг h 2n) (см. стр. 67). Гаринг, Нильсен и Pao [406] показали, что точно так же, как в линейных молекулах, при А = 1 удвоение в первом хорошем приближении равно  [c.97]


Полосы электронного перехода П — П для линейных молекул также совершенно аналогичны полосам двухатомных молекул при условии, что не возбуждается деформационных колебаний. Если оба состояния П относятся к случаю связи Ь, то дан е электронно-колебательные полосы, обусловленные возбуждением деформационных колебаний, обладают той же структурой, что и соответствующие электронные полосы двухатомных молекул. Конечно, будет наблюдаться и отличие, вызванное тем, что для каждого колебательного перехода из-за расщепления Реннера — Теллера вместо одной полосы в спектре появляется несколько подполос. Однако если в одном из П-состояний (или в обоих состояниях) как спиновое расщепление, так и расщепление Реннера — Теллера будут велики, то структура электронноколебательных полос несколько изменится. Мы рассмотрим здесь только случай, когда в обоих состояниях П имеет место взаимодействие двух типов, т.е. переход П (а) — П (а) с отличным от нуля значением е для обоих состояний. Полоса О—О нри таком переходе нормальная — она состоит из двух подполос П1/2 — Hi/2 и Шз/з — Шз/2, в каждой из которых имеются интенсивные Р- и 7 -ветвн и слабая ветвь Q каждая из этих полос двойная, если разрешено Л-удвоение. Поскольку ( -ветви слабые, в полосе только два четких канта (а не четыре, как нри переходе 2 — Ш).  [c.189]

Л -типа значительно больше, чем обычное удвоение ЛГ-типа в линейной молекуле, где оно может быть обусловлено только удвоением -типа или Л-типа. Лсимметрическое удвоение для = 1 в соответствии с уравнением (1,156) и в пренебрежении членами более высоких степеней равно  [c.195]

До сих пор полностью проанализированы только два случая синглетных линейно-линейных переходов группа полос около 4050 А молекулы Сз (Госсе, Герцберг, Лагерквист и Розен [411 ]) и система полос С2Н2 около 1240 А (Герцберг [524]). Оба случая относятся к электронным переходам Ш — 2. На рис. 72 приведена спектрограмма полосы 0 — 0 молекулы С3. Ясно видны три ветви (Р, Q ж В). Из того факта, что Р-ветвь явно не является продолжением 7 -ветви, можно заключить, что в спектре отсутствуют чередующиеся линии ). Между Р-, В- и ( -ветвями имеется комбинационный дефект, что говорит о небольшом удвоении А-типа в состоянии П ( = = 0,0004 см ). Примеры электронно-колебательных переходов А — Ш так-  [c.185]

Определение вращательных постоянных в верхнем и нижнем состояниях при линейно-изогнутых переходах производится почти точно так же, как и при изогнуто-линейных переходах. Так, эффективное значение В для нижнего состояния равно по существу /з (5 + С), а из удвоения К-тжаа. (при К" = 1) легко получить значение 2 В — С) с соответствующими поправками для молекулы типа сильно асимметричного волчка (гл. I, разд. 3,г). Поскольку у всех колебательных уровней нижнего состояния имеются подуровни со всеми значениями К", определять значения вращательных постоянных А1 несколько легче, чем в случае изогнуто-линейных переходов, наблюдаемых при поглощении. Для этого необходимо составить разность волновых чисел начал подполос Vo [К — К"). Например, если пренебречь центробежным растяжением и членами более высокой степени, которые учитывают влияние асимметрии (фиг. 90, б), то  [c.212]


Смотреть страницы где упоминается термин Линейные молекулы удвоение типа : [c.32]    [c.406]    [c.636]    [c.186]    [c.195]    [c.217]    [c.505]    [c.527]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.406 , c.417 , c.421 ]



ПОИСК



Линейные молекулы

Удвоение линейных молекул



© 2025 Mash-xxl.info Реклама на сайте