Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление углеродистое

В заключение необходимо отметить, что увеличение временного сопротивления углеродистых, низколегированных и высокопрочных нержавеющих сталей до 1600—2000 МПа вследствие изменения их химического состава или термообработки приводит к повышению предела выносливости образцов до 700—800 МПа и не оказывает заметного влияния на условный предел коррозионной выносливости. Последний при Л/=5 10 цикл на-  [c.65]

Материал валов. Коленчатые валы тихоходных и средней быстроходности двигателей изготовляют из углеродистой стали — Ст. 4 или Ст. 5. Валы быстроходных дизелей изготовляют из сталей повышенного сопротивления — углеродистых или слаболегированных (около 1% N1). При применении твёрдых сплавов для подшипников (свинцовистые бронзы) шейки валов должны иметь повышенную  [c.50]


Чугун с шаровидной формой графита имеет повышенную эрозионную стойкость по сравнению с чугунами, имеюш,ими пластинчатый графит, однако его сопротивление микроударному разрушению ниже сопротивления углеродистой стали (например, стали 35Л).  [c.144]

Прочностные свойства стали характеризуются временным сопротивлением разрыву и пределом текучести, так как в условиях умеренных температур эти характеристики являются основой выбора допускаемых напряжений. Временное сопротивление разрыву стали зависит от температуры. При повышении температуры до 250—300 °С временное сопротивление углеродистой стали увеличивается, а затем с ростом температуры начинает уменьшаться.--  [c.283]

Критерии пластичности и предельного сопротивления углеродистых сталей в условиях низких температур  [c.346]

Удельное электрическое сопротивление углеродистых сталей при. различных приращениях температуры приведено в табл. 5.  [c.26]

При стыковой сварке сопротивлением углеродистой стали часто выбор параметров режима начинается также по опытным данным с установления правильного соотношения плотности тока / а/мм и длительности нагрева сек. по эмпирической формуле  [c.84]

Цифрой 7 в формуле обозначено отношение удельных сопротивлений углеродистой стали и меди (для легированных сталей эта величина будет несколько большей, а сила тока в пружине — меньшей).  [c.113]

Углеродистые литейные стали обладают высокими временным сопротивлением (400—600 МПа), относительным удлинением (10— 24 %), ударной вязкостью, достаточной износостойкостью при ударных нагрузках. Основной элемент, определяющий механические свойства углеродистых литейных сталей — углерод.  [c.165]

Сварка оплавлением имеет преимущества перед сваркой сопротивлением. В процессе оплавления выравниваются все неровности стыка, а оксиды и загрязнения удаляются, поэто.му не требуется особой подготовки места соединения. Можно сваривать заготовки с сечением сложной формы, а также заготовки с различными сечениями, разнородные металлы (быстрорежущую и углеродистую стали, медь и алюминий и т, д.).  [c.214]

Здесь рассмотрены крепежные детали общего назначения. Болты, винты, шпильки, гайки изготовляют из углеродистых, легированных, коррозионностойких и других сталей и из цветных сплавов. Болты, винты, шпильки и шурупы, изготовленные из углеродистых и легированных сталей, характеризуют в обозначении одним из 12 классов прочности 3.6 4.6 4.8 5.6 5.8 6.6 6.8 6.9 8.8 10.9, 12.9 14.9, где первое число, умноженное на 100(10), определяет минимальное временное сопротивление в МПа (кгс/мм ), второе, умноженное на 10  [c.236]


Числом твердости можно пользоваться в производственных условиях для определения механических характеристик материала. Так, по числу твердости можно с достаточной степенью точности определить предел текучести, временное сопротивление и предел упругости. Для углеродистой термически не обработанной стали связь между числом твердости и временным сопротивлением может быть выражена следующей зависимостью  [c.138]

Зная величину временного сопротивления Од, можно найти приближенные значения предела выносливости по следующим эмпирическим соотношениям для углеродистой стали = (0,4 - - 0,45) (Тп для легированной стали (Т 1 = 0,35 Ов -Ь (7—12)даН/мм для чугуна о 1 = 0,4 Ов для цветных металлов о = (0,24 -ь - 0,5) о .  [c.225]

Проверим прочность ступенчатого стержня круглого поперечного сечения (рис. 132). Материал стержня — закаленная высоко-углеродистая сталь с временным сопротивлением = 9000 кгс/см . Стержень растягивается силами Р = 8000 кгс.  [c.124]

Технологические особенности сварки высоколегированных сталей связаны с их физическими свойствами и системой легирования. Пониженная теплопроводность и большое электрическое сопротивление (примерно в 5 раз больше, чем у углеродистых сталей) способствуют большей скорости плавления металла, большей глубине проплавления и коэффициенту наплавки, поэтому для сварки высоколегированных сталей требуются меньшие токи и погонные энергии по сравнению с углеродистыми, укороченные электроды при ручной сварке, меньше вылет электрода и больше скорость подачи проволоки при механизированной сварке.  [c.127]

Углеродистые, марганцовистые и марганцево-кремнистые Не ниже нижнего значения временного сопротивления разрыву основного металла, указанного в обязательных приложениях 18 и 19 для соответствующей марки стали 18  [c.37]

Неровности, являясь концентраторами напряжений, снижают сопротивление усталости деталей, особенно при наличии резких переходов, выточек и т. п. Так, при уменьшении параметра шероховатости поверхности впадины нарезанной или шлифованной резьбы болтов от = 1,0 мкм до Ra == 0,1 мкм допускаемая предельная амплитуда цикла напряжений увеличивается на 20—50 %, причем в большей степени для болтов из высокопрочных легированных термически обработанных сталей и в меньшей —для болтов из низколегированных и углеродистых сталей, что объясняется большей чувствительностью ле/ ированных сталей к концентрации напряжений.  [c.195]

Влияние температуры. С увеличением температуры сопротивление усталости детали уменьшается. Например, для углеродистых сталей ориентировочно считают, что заметное снижение предела текучести а . наступает при температуре свыше 200°С. При температуре 300°С это снижение достигает 30. .. 40%, а затем предел текучести понижается примерно на 10% с повышением температуры на 100°С.  [c.155]

Для большинства углеродистых сталей предел пропорциональности можно приблизительно считать равным половине временного сопротивления.  [c.195]

На рис. 122 приведены диаграммы напряжений углеродистой стали при различных температурах, а на рис. 123 — графики зависимости предела текучести, временного сопротивления и относительного удлинения при разрыве от температуры. В интервале температур 150—250 °С временное сопротивление достигает наибольшего значения, а относительное удлинение после разрыва —  [c.122]

При нагревании углеродистых сталей временное сопротивление (предел прочности) сначала повышается (до t = 390° С), потом резко снижается. Характеристики пластичности сначала уменьшаются (до t = 300" С), потом увеличиваются. На рис. 2.19, а, б, в показаны кривые зависимости от температуры механических характеристик а , характеристик пластичности фо>  [c.41]


В случае резисторов не наблюдалось каких-либо остаточных повреждений, связанных с экспозицией при высоком давлении. При приложении давления наблюдалось существенное уменьшение сопротивления углеродистых композиционных резисторов, но после снятия нагрузки остаточных эффектов не отмечено. Тонкопленочные и проволоч-  [c.481]

Для предохранения тонкого проводящего слоя от механических повреждений и от воздействия атмосферы заготовки покрывают лаком. После армировки выводов производится автоматическая раскалибровка заготовок на группы по величине сопротивлений. Углеродистые резисторы подразделяют на два вида  [c.324]

В случае гетерогенных сплавов эффект изменения электросопротивления зависит от двух факторов, часто действующих в противоположных направлениях от величины искажений в решетках фаз сплава и от размеров. формы и взаимной ориентировки фазовых и структурных составляющих. Так, сопротивление углеродистой проволоки (0,58% С), предварительно патентирован-ной в свинце, не только не возрастает, но даже падает с ростом деформации. В этом случае эффект от наклепа феррита оказывается меньшим, чем эффект от переориентировки частиц цементита вдоль проволоки, снижающей электросопротивление.  [c.720]

Согласно требованиям ГОСТ 9467—75 в условном обозначении электродов для сварки углеродистых и низколегированных сталей с временным сопротивлением разрыву менее 60 кгс/мм в знаменателе (во второй строке — см. рис. 69) группа индексов, указывающих характеристики паплавлешюго металла, должна быть записана следующим образом первые два индекса указывают минимальное значение величины Ов (кгс/мм ), а третий индекс одновременно условно характеризует минимальные значения показателей 65 и температуры при которой определяется ударная вязкость.  [c.106]

Все легированные стали, особенно содержащие карбидообразующие элементы, после отпуска при одинаковых сравниваемых температурах обладают более высокой твердостью, чем углеродистые стали (рис. 122, а), что связаг 0 с замедлением распада мартенсита, образованием и коагуляцией карбидов. В сталях, содержащих большое количество таких элементов, как хром, вольфрам или молибден, в результате отпуска при высоких температурах (500—600 °С) наблюдается даже повышение прочности и твердости, связанное с выделением в мартенсите частиц специальных карбидов, повы-и1ающих сопротивление пластической деформации (рис. 122, а).  [c.188]

На рис. 122 приведены диаграммы напряжения углеродистой стали при различных температурах, а на рис. 123 — графики зависимости предела текучести, временного сопротивления и относительного удлинения при разрыве от температуры. В интервале температур 150—250 С временное сопротивление достигает наибольшего значения, а относительное удлинение после разрыва — наименьшего сталь, как говорят, становится синеломкой. При более высоких температурах прочность углеродистой стали быстро падает, поэтому выше 360—400 С такую сталь не применяют.  [c.113]

В машиностроении из углеродистых сталей общего назначения для неупрочня-емых деталей преимущественно применяют стали группы А, поставляемые по механическим свойствам (табл. 2.3). Они обозначаются буквами Ст и номерами в порядке возрастания прочности причем начиная со Ст4 номер соответствует минимальному значению временного сопротивления (МПа), деленному на 100. Индекс кп обозначает кипящую сталь (не подвергнутую раскислению в ковше). Она деп1евле спокойной стали примерно на 12 %, более засорена газами и менее однородна. Индекс сп означает спокойную сталь, индекс пс — полуспокойную.  [c.28]

Хромистые стали имеют по сравнению с углеродистыми повышенные прочность, износостойкость, а нри значительном содержании хрома - повын1еннос сопротивление коррозии. Благодаря этим свойствам, а также относительно невысокой стоимости их широко н )именяк)т в машиностроении для деталей сравнительно небольших сечений. Ввиду недостаточно хорошей прокаливаемости применение этих сталей для деталей больших сечений неэффективно.  [c.32]

Испытания на твердость. Данным методом определяют сопротивление поверхностных слоев металла сварного соединения местной пластической деформации, возникающей при внедрении твердого индентора (наконечника). Воздействие на металл при этом минимальное, что позволяет для некоторых видов продукции осуществлять 100%-ный контроль. При испытании на твердость на основе косвенных методов (по числу твердости) могут оцениваться такие характеристики как временное сопротивление (а ), предел текучести (ст , сУог)- модуль упругости (Е). Например, корреляция значения для углеродистых сталей с твердостью по Бриннелю НВ следующая = 0,36 НВ, а для легированных сталей — = 0,33 НВ.  [c.216]

Твердость по Бринеллю приблизительно пропорциональна временному сопротивлению для мало- и среднепрочных углеродистых и термически обработанных сталей Ов = 0,3- 0,4 НВ. Сопротивление срезу Тср для мало- и среднепрочных сталей составляет 65—80% их предела прочности, для высокопрочных — 55—65%. Предел текучести при сжатии примерно равен пределу текучести ао,2, определенному при растяжении.  [c.49]

Морская атмосфера обладает повышенной коррозионной активностью вследствие наличия в воздухе морской соли в виде тонкой пьши и высокой относительной влажности. Электрохимический процесс в морской атмбсфере происходит иначе, чем в морской воде. В морской атмосфере доступ кислорода через тонкую пленку влаги облегчен и не лимитирует процесс. В данном случае скорость коррозии зависит от омического сопротивления влажной пленки, так как при малой толщине ее сопротивление внешней цепи между анодом и катодом коррозионного элемента может стать очень большим. Морская соль, содержащаяся в воздухе, растворяется в пленке влаги и быстро насьдцает ее, что значительно уменьшает омическое сопротивление пленки и увеличивает коррозионный ток. Коррозия в морской атмосфере у сталей, содержащих медь, меньше, чем у углеродистых.  [c.10]


Наиболее эффективное средство повышения сопротивления стали усталости и коррозионной усталости среди расмотренных способов это создание белых> слоев механоультразвуковой обработкой. Она эффективна даже без цементации — сложного и дорогостоящего технологического процесса. Положительное влияние белого слоя, образующегося на поверхности стальной детали при больших скоростях резания (80—200 м/мин) или при импульсной обработке расширяет возможность применения углеродистых сталей для изготовления газонефтепромыслового оборудования.  [c.18]


Смотреть страницы где упоминается термин Сопротивление углеродистое : [c.122]    [c.12]    [c.126]    [c.12]    [c.131]    [c.230]    [c.257]    [c.118]    [c.328]    [c.131]    [c.127]    [c.14]    [c.476]    [c.77]    [c.201]    [c.103]    [c.225]   
Справочник по электротехническим материалам (1959) -- [ c.369 ]



ПОИСК



Восстановитель углеродистый электрическое сопротивление

Глава 7. Характеристики сопротивления усталости углеродистой стали

Критерии пластичности и предельного сопротивления углеродистых сталей в условиях низких температур

Непроволочные сопротивления с углеродистым наполнителем или угольными пленками

Пленочные углеродистые сопротивления

Р углеродистое

Сопротивление временное отливок из стали конструкционной углеродистой

Сопротивление непроволочное объемно углеродистое постоянное

Сопротивления непроволочные с угольными углеродистые

Стальная углеродистая пружинная высоких сопротивлений

Углеродистая пружинная высоких сопротивлений

Углеродистые сопротивления непроволочные



© 2025 Mash-xxl.info Реклама на сайте