Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь высоколегированная механические свойства

Толщина слоя зоны термического влияния не превышает 0,2—0,5 мм, но ее наличие необходимо учитывать при оценке эксплуатационных свойств получаемых деталей. Так, обработанная поверхность сталей и титановых сплавов в результате резки упрочняется вследствие закалки, поверхность высоколегированных сталей изменяет механические свойства (коррозионную стойкость, жаропрочность и т. п.). Поэтому вопрос о необходимости последующей обработки дефектного слоя решается в каждом конкретном случае исходя из эксплуатационных требований к деталям.  [c.621]


Электроды также подразделяются на типы в зависимости от механических свойств металла шва (для конструкционных сталей) и механических свойств и химического состава металла шва (для теплоустойчивых и высоколегированных сталей).  [c.389]

Высоколегированные стали обладают повышенными механическими свойствами, жаропрочностью, хорошей окалиностойкостью, стойкостью против коррозии и воздействия агрессивной среды. Применение этих сталей в про-  [c.81]

Титан и сплавы на его основе сочетают в себе весьма ценные физические и механические свойства с исключительно высокой коррозионной стойкостью в некоторых сильно агрессивных средах, кото )ые в ряде случаев превосходят стойкость высоколегированных кислотостойких сталей.  [c.277]

К этой группе материалов относятся низкоуглеродистая электротехническая сталь, применяемая для изготовления реле, сердечников и полюсов электромагнитов, низколегированные кремнистые (1—2%) горячекатаные стали для изготовления корпусов динамомашин и генераторов, высоколегированные кремнистые (4—5%) горячекатаные стали для изготовления гидрогенераторов и машин переменного тока повышенной частоты и среднелегированные (2,5—3,5 Si) холоднокатаные текстурованные стали (трансформаторная сталь) для изготовления Турбо- и гидрогенераторов, а также крупных электродвигателей постоянного тока. Эти материалы сочетают высокие магнитные свойства, хорошую технологичность, хорошие или удовлетворительные механические свойства и сравнительно низкую стоимость.  [c.131]

Некоторые резервуары могут быть изготовлены из низколегированных сталей повышенной прочности, если благодаря электрохимической защите будет обеспечена достаточная их коррозионная стойкость. Без электролитической защиты для них потребовалось бы применить коррозионностойкие высоколегированные стали или сплавы, которые обычно имеют менее благоприятные механические свойства. Областями применения здесь могут быть теплообменники, трубопроводы для холодной морской воды, турбины, сосуды-реакторы, резервуары-хранилища для химических продуктов (см. раздел 20).  [c.414]

О ВОЗМОЖНОСТИ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КАЧЕСТВА ТЕРМИЧЕСКОЙ ОБРАБОТКИ И МЕХАНИЧЕСКИХ СВОЙСТВ ВЫСОКОЛЕГИРОВАННЫХ КОРРОЗИОННОСТОЙКИХ, ЖАРОСТОЙКИХ и ЖАРОПРОЧНЫХ СТАЛЕЙ  [c.93]

Мартенситный класс. Стали этого класса по своим свойствам являются средними между низколегированными сталями перлитного класса и высоколегированными аустенитно-го. После термической обработки они обладают высокими механическими свойствами. Основной вид термической обработки, придающий оптимальные свойства,— закалка или нормализация с последующим высоким отпуском. Иногда используется смягчающая обработка, заключающаяся в отжиге. Режимы термической обработки сталей этого класса по ГОСТ 10500—63 и ГОСТ 5949—61 приведены в табл. 2.  [c.94]


О возможности неразрушающего контроля качества термической обработки и механических свойств высоколегированных коррозионностойких, жаростойких и жаропрочных сталей. М е л ь г у й М. А.,  [c.258]

Химический состав, механические свойства и назначение высоколегированных сталей приведены в ГОСТ 5632—72, а сортамент — в ГОСТ 5582—75, ГОСТ 5949—75, ГОСТ 7350—77, ГОСТ 20072—74 и др.  [c.333]

Большинство фирм используют для изготовления штоков высоколегированные хромоникелевые и хромоникельмолибденовые стали. Именно такие стали в наибольшей мере способны противостоять коррозии в условиях контакта с набивкой, несмотря на то что и они не лишены недостатков имеют относительно невысокие механические свойства, низкую стойкость к задиранию.  [c.59]

Механические свойства высоколегированных коррозионностойких сталей и сплавов после оптимальной термической обработки  [c.46]

Режимы термической обработки и механические свойства низко-и высоколегированных сталей при нормальной температуре  [c.89]

Коррозионностойкие сплавы высоколегированные 44—49 — Коррозионная стойкость 46—48 —. Марки и назначение 45 — Механические свойства 46 — Химический состав 44 --литейные — Механические свойства и термическая обработка 50 — Химический состав 49 Коррозионностойкие стали 9, 12—16, 18, 22  [c.433]

Химический состав 12 Коррозионностойкие стали высоколегированные 44—47 — Коррозионная стойкость 46, 47 — Марки и назначение 45 — Механические свойства 46 — Химический состав 44  [c.433]

Деформируемость — обрабатываемость давлением — способность материалов воспринимать пластическую деформацию в процессе видоизменения формы при гибке, ковке, штамповке, прокатке и прессовании. Она зависит 1) от химического состава стали с небольшим содержанием углерода и легированные никелем и марганцем деформируются лучше, чем высоколегированные, хромоникелевые, высокоуглеродистые и др. 2) от механических свойств материалы с высокими показателями удлинения, сужения и ударной вязкости более способны к восприятию деформации 3) от скорости деформации, температуры и величины обжатия на каждом переходе.  [c.7]

Механические свойства труб из высоколегированных аустенитных сталей при 20°С (ЧМТУ 2884-51 и 2885-51)  [c.15]

Марки и механические свойства отливок из легированной и высоколегированной стали см. в ГОСТ 7832 — 65 и ГОСТ 2176—67.  [c.591]

Методом прецизионного литья изготовляют отливки из самых разнообразных металлов, включая высоколегированные стали и твёрдые сплавы. Применение давления при заливке форм обеспечивает получение отливок с механическими свойствами, не уступающими кованым.  [c.237]

МЕХАНИЧЕСКИЕ СВОЙСТВА И ХИМИЧЕСКИЙ СОСТАВ ВЫСОКОЛЕГИРОВАННЫХ ЖАРОПРОЧНЫХ И НЕРЖАВЕЮЩИХ СТАЛЕЙ, ИСПОЛЬЗУЕМЫХ ДЛЯ ИЗГОТОВЛЕНИЯ ТРУБ (США)  [c.181]

МЕХАНИЧЕСКИЕ СВОЙСТВА ВЫСОКОЛЕГИРОВАННЫХ ХРОМИСТЫХ И ХРОМОИИКЕЛЕВЫХ СТАЛЕЙ. ИСПОЛЬЗУЕМЫХ ДЛЯ ИЗГОТОВЛЕНИЯ ОТЛИВОК (ФРГ)  [c.198]

МЕХАНИЧЕСКИЕ СВОЙСТВА ВЫСОКОЛЕГИРОВАННЫХ ХРОМИСТЫХ, И ХРОМОНИКЕЛЕВЫХ СТАЛЕЙ,  [c.203]

Основные типы покрытых металлических электродов для ручной дуговой сварки высоколегированных сталей с особыми свойствами установлены ГОСТ 10052—75. Химический состав наплавленного металла и механические свойства металла шва и наплавленного металла при нормальной температуре для некоторых марок электродов приведены в табл. 3.16.  [c.339]

Химический состав, термообработка и механические свойства и назначение отливок из высоколегированных сталей (ГОСТ 2176-57) приведены в табл. 21—23,  [c.32]

Механические свойства стали высоколегированной коррозионностойкой и жаростойкой (по ГОСТу 5949-61)  [c.59]

П-19. Механические свойства и применение высоколегированной коррозионностойкой, жаростойкой и жаропрочной стали  [c.48]

Сульфид марганца менее вреден, чем сульфид железа его эвтектика с железом имеет более высокую температуру плавления, так что стремятся иметь в стали такое количество марганца, которое может связать почти всю серу. Однако и включения сернистого марганца понижают механические свойства стали поэтому содержание серы в углеродистых и низколегированных сталях не должно быть больше 0,045—0,04%, а в высоколегированных — 0,03 и даже 0,025%.  [c.22]

К материалам, повышение упругих свойств которых достигают термической обработкой, относятся углеродистые инструментальные стали марок У8А—У12А, углеродистые конструкционные качественные стали марок 65, 70, 65Г, а также некоторые высоколегированные стали, физико-механические свойства которых приведены в табл. 30. Эта группа материалов имеет высокие прочностные и упругие свойства. Основным недостатком, ограничивающим их применение при изготовлении упругих элементов сложных форм, является малая пластичность после термической обработки. Кроме того, термообработка вызывает дополнительные внутренние напряжения, под действием которых происходит коробление материалы плохо свариваются и паяются, имеют низкие антикоррозионные свойства (кроме нержавеющей стали 4X13), что вызывает необходимость специальных покрытий, которые, в свою очередь, приводят к увеличению упругих несовершенств.  [c.186]


Высоколегированные стали и сплавы по сравнению с менее легированными обладают высокой хладостойкостью, жаропрочностью, коррозионной стой костью и жаростойкостью. Эти важнейшие материалы для химического, нефтяного, энергетического машино-строенпя и ряда других отраслей промышлепности используют при изготовлении конструкций, работающих в широком диапазоне температур от отрицательных до положительных. Несмотря на общие высокие свойства высоколегироваьшых сталей, соответствующий подбор состава легирования определяет их основное служебное назначение. В соответствии с этим их можно разделить на три группы коррозионно-стойкие, жаропрочные и жаростойкие (окалиностойкие). Благодаря их высоким механическим свойствам при отрицательных температурах высоколегированные стали и сплавы применяют в ряде случаев и как хладостойкие.  [c.279]

Структура быстрорежущей стали после закалки представляет собой высоколегированный мартенсит, содержащий 0,3—0,4 % С, нерастворенные избыточные карбиды и остаточный аустенит (рис. 155, в). Чем выше температура закалки, тем ниже температура мартенситных точек УИ и М и тем больше количество остаточного аустенита. Обычно содержание остаточного аустенита в стали Р18 составляет 25—30 %, а в стали Р6М5 28—34 %, Остаточный аустенит понижает механические свойства стали, ухудиьает ее шлифуемость и стабильность размеров инструмента. Г]()эгому его присутствие в готовом 1П1Струменте нежелательно.  [c.301]

Механические свойства высоколегированных сталей прежде всего зависят от зернистости структуры и их гомогенности. Литую структуру и механические свойства литых материалов ухудшают микрораковины, сетки карбидов, дендриты, усадочные раковины, поверхностные пороки и обезуглероживание поверхности.  [c.363]

В качестве плакирующего слоя или покрытия используют высоколегированные стали или дефицитные металлы, обеспечивающие необходимые физико-химические и механические свойства поверхности. Так как толщины металлических покрытий и плакирующих слоев незначительны и не превьипают 1—2 мм, использование биметаллических материалов позволяет сэкономить высоколегированные стали и дефицитные цветные металлы.  [c.49]

Выбор марок сталей для зубчатых колес. В термически необработанном состоянии механические свойства всех сталей близки. Поэтому применение легированных сталей без термообработки недопустимо. При выборе марки сталей для зубчатых колес кроме твердости необходимо учитывать размеры заготовки. Это объясняется тем, что прокаливаемость сталей различна углеродистых — наименьшая высоколегированных — наибольп1ая. Стали с плохой прокаливаемостью (углеродистые конструкционные) при больших сечениях пе ьзя термически обработать на высокую твердость. Поэтому марку стали для упрочняемых зубчатых колес выбирают с учетом их размеров, а именно диаметра D вала шестерни или червяка и наибольшей ширины сечения колеса S с припуском на механическую обработку после нормализации или улучшения. Таким образом, окончательный выбор марки сталей для зубчатых колес (пригодность заготовки колес) необходимо производить после определения геометрических размеров зубчатой передачи.  [c.169]

Как показали работы Д. А. Прокошкина и др. [101], способ дробления деформации при ТМО на ряд последовательных порций, чередующихся с температурными выдержками упрочняемого металла (далее этот метод упрочнения будем называть ТМО с применением дробной деформации), оказался весьма эффективным для условий ВТМО. При обработке высоколегированной конструкционной стали по режиму нагрев до 900° прокатка при той же температуре немедленная закалка и отпуск при 250° в течение 50 мин., заготовки деформировались на одну и ту же степень обжатия (60%), но при разном (1—3) числе проходов [101]. Изменение механических свойств стали после таких режимов ВТМО показано в табл. 16.  [c.73]

В первой части книги представлены некоторые вопросы теории и практики методов, разрабатываемых в Отделе физики неразрушающего контроля АН БССР, а также результа-1Ы исследования физических процессов и явлений, протекающих в материалах при воздействии переменных и постоянных полей, статических и динамических нагрузок. В области теории нелинейных процессов в ферромагнетиках получены общие соотношения для расчетов гармонических составляющих э. д. с. накладных преобразователей в зависимости от коэрцитивной силы, максимальной и остаточной индукции при наложении постоянного и переменного полей. Даны обзор по теории феррозондов с поперечным и продольным возбуждением, практические рекомендации по их применению. Приведены результаты исследований магнитостатических полей рассеяния на макроскопических дефектах, обоснована возможность их моделирования, рассмотрены режимы записи указанных полей при магнитографической дефектоскопии, обеспечивающие максимальную выяв ляёмость дефектов. Анализируется характер изменения магнитных, механических и структурных свойств высоколегированных и жаропрочных сталей в зависимости от режимов термической обработки для обоснования метода контроля по градиенту остаточного поля ири импульсном локальном намагничивании, который широко используется при контроле механических свойств низкоуглеродистых сталей.  [c.3]

Разработанное новое безокислительное электродное покрытие без мрамора и жидкого стекла обеспечивает удовлетворительные технологические характерпстивги сварочных электродов, малую окисляемос гь алюминия электродного стержня и отсутствие увеличения конценграции кремния в наплавленном металле в сравнении с составом электродного стержня.. Это позволяет получать металл сварного шва, малосклониый к образованию горячих треш,ин, и удовлетворительные его механические свойства при сварке высоколегированных аустенитных марганцево-алюминиевых сталей.  [c.200]


На основе поверочных расчетов определяется допустимость принятых конструктивных форм, технологии изготовления и режимов эксплуатации если нормативные требования поверочного расчета не удовлетворяются, то производится изменение принятых решений. Для реализации расчетов по указанным выше предельным состояниям в ведущих научно-исследовательских и конструкторских центрах был осуществлен комплекс работ по изучению сопротивления деформациям и разрушению реакторных конструкционных материалов. При этом для вновь разрабатываемых к применению в реакторах металлов и сплавов (низколегированные тепло-и радиационно-стойкие стали, высоколегированные аустенитные стали для тепловьщеляющих элементов и антикоррозионных наплавок, шпилечные высокопрочные стали) исследовались стандартные характеристики механических свойств, входящие в расчеты прочности по уравнениям (2.3), -пределы текучести Оо,2, прочности, длительной прочности о , и ползучести a f Наряду с этими характе мстиками по данным стандартных испытаний определялись характеристики пластичности (относительное удлинение 5 и сужение ударная вязкость а , предел выносливости i, твердость, модуль упругости Е , коэффициент Пуассона д, а также коэффициент линейного расширения а.  [c.38]

Г механические свойства и износостойкость сталей различных классов простых углеродистых, низколегированных конструк-i ционных, высоколегированных аустенитных, мартенситных, кар-бидных и друг . Образцьриспытывали при различных структур-I ных состояниях. Испытания на износ проводили на установках типа Шкода—Савина, Бринеля и на центробежной машине X ЧИМЭСХа,, в которой исследовалась абразивная износостойкость % образцой При изнашивании вращением по прослойке кварцевого песка.  [c.5]

Для шестерен должна применяться преимущественно мелкозернистая сталь (величина зерна для средне- и высоколегированной стали — № 5—7 для малолегированной стали — № 4—6) с про-каливаемостью, обеспечивающей получение требуемых механических свойств по сечению шестерни после термообработки.  [c.700]

Механические свойства высоколегированной коррозиоиностойкой стали (ГОСТ 5949—61 )  [c.197]


Смотреть страницы где упоминается термин Сталь высоколегированная механические свойства : [c.533]    [c.537]    [c.438]    [c.76]    [c.34]    [c.126]    [c.37]    [c.694]    [c.39]   
Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.466 , c.467 , c.517 ]



ПОИСК



Механические свойства высоколегированных сталей марок 1Х12Н2ВМФА (ЭИ

Сталь Коэффициент концентрации напряжений высоколегированная — Группы 20 Назначение 21—23 — Свойства механические

Сталь Механические свойства

Сталь Свойства

Сталь высоколегированная

Сталь высоколегированная нержавеющая — Механические свойства — Нормы

Сталь высоколегированная состав и механические свойств



© 2025 Mash-xxl.info Реклама на сайте