Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь Сварка в защитных газах

Области применения сварки в защитных газах охватывают широкий круг материалов и изделий (узлы летательных аппаратов, элементы атомных установок, корпуса и трубопроводы химических аппаратов и т. п.). Аргонодуговую сварку применяют для цветных (алюминия, магния, меди) и тугоплавких (титана, ниобия, ванадия, циркония) металлов и их сплавов, а также легированных и высоколегированных сталей.  [c.198]

Наиболее прогрессивными видами сварки меди считают сварку в защитных газах неплавящимся (для толщин до 2—5 мм) и плавящимся (для больших толщин) электродами. При сварке плавящимся электродом применяют аргон, гелий, азот и их смеси с небольшими добавками кислорода. Например, Не-Ь(1—2)% Ог, Аг- -(2— 4)% Оа и На-Ь(4—6)% Оа или Ыа(25—32)%+Оа(4—6)%+Аг(72- 68)%.  [c.137]


Сварка в защитных газах выполнятся неплавящимся (вольфрамовым) и плавящимся электродами. Для увеличения глубины проплавления используют инертные по отношению к меди газы аргон всех сортов в соответствии с ГОСТ 10157—73, гелий (чистотой 99,9 %), азот и газовые смеси типа 70...80 % Аг + 20...30 % N2. Эти газы в меди не растворяются и с ней не взаимодействуют.  [c.266]

Для сварки меди и ее сплавов могут быть применены все основные способы сварки плавлением. Наибольшее применение нашли дуговая сварка в защитных газах, ручная дуговая сварка покрытыми электродами, механизированная дуговая сварка под флюсом, газовая сварка, электрон-но-лучевая сварка.  [c.457]

Применение керамического флюса дает возможность вводить в сварочную ванну модификаторы, позволяющие регулировать процессы кристаллизации и физические свойства наплавленного металла. Хорошие результаты дает способ сварки в защитных газах (аргона, гелия), особенно при сварке малых толщин. Сварку проводят вольфрамовым электродом на постоянном токе прямой поляр-, ности. В качестве присадочного металла применяют прутки из меди, содержащей кремний, олово, марганец.  [c.498]

Сварка в защитных газах. Автоматическая, полуавтоматическая и ручная сварка меди в среде защитных газов может производиться плавящимся и вольфрамовым электродом. Наиболее часто применяется аргоно-дуговая сварка вольфрамовым электродом (толщины до 3 мм), реже — сварка плавящимся электродом [25].  [c.337]

Изложите сущность аргонно-дуговой сварки и ее преимущества. 5. Какие источники питания дуги током применяют при электросварке 6. Каковы особенности сварки и наплавки стальных деталей 7. Чем обусловлены трудности при сварке чугунных деталей 8. Изложите приемы горячей сварки чугунных деталей. 9. Изложите приемы холодной сварки чугунных деталей. 10. Каковы особенности и приемы сварки деталей из меди и ее сплавов II. Каковы особенности и приемы сварки деталей из алюминия и его сплавов 12. Изложите сущность газопламенной сварки. Назовите ее преимущества и недостатки по сравнению с ручной электродуговой сваркой. 13. Расскажите о процессе автоматической наплавки под слоем флюса, его преимуществах и недостатках. 14. В чем заключаются особенности и преимущества автоматической сварки в защитных газах 15. Какие присадочные материалы и оборудование используют при механизированных способах сварки 16. Перечислите особенности вибродуговой наплавки, ее преимущества и недостатки. 17. В чем заключается сущность плазменно-дуговой сварки и наплавки и каковы  [c.97]


Сварка латуней . При сварке латуней возникают те же трудности, что и при сварке меди с дополнительной возможностью испарения цинка из сплава, которое приводит к появлению пор в швах и образованию вредных паров цинка. Для сварки латуни применяют те же способы, что и для меди, однако используют ряд приемов, уменьшающих испарение цинка. Так, например, газовую сварку латуни проводят с газовым флюсом (пары борсодержащих жидкостей), который подается вместе с ацетиленом. Возможна также газовая сварка латуни окислительным пламенем. Хорошие результаты можно получить при сварке в защитных газах, контактной сварке и автоматической под керамическим флюсом.  [c.678]

Кроме перечисленных сварных соединений и швов при ручной дуговой сварке применяют соединения под острыми и тупыми углами по ГОСТ 11534—75, но они встречаются значительно реже. Для сварки в защитном газе, сварки алюминия, меди, других цветных металлов и их сплавов применяют сварные соединения и швы, предусмотренные отдельными стандартами. Например, форма подготовки кромок и швов конструкций трубопроводов предусмотрена ГОСТ 16037—80, в котором определены основные размеры швов для различных видов сварки. На рис. 2.6, а показана подготовка кромок шва С-1 с толщиной элементов 2—4 мм для ручной дуговой сварки плавящимся электродом и 2—3 мм для сварки неплавящимся электродом в защитном газе. На рис. 2.6, б показана форма подготовки кромок шва С-6 с толщиной 3— 20 мм для комбинированной ручной сварки плавящимся или неплавящимся электродом подварочного шва и последующей механизированной сварки основного шва, а также для сварки стали толщиной 3 мм неплавящимся электродом в защитном газе.  [c.26]

Для ручной сварки в защитном газе медно-никелевого сплава, меди с бронзой, латунью и сталью, медноникелевого сплава с бронзой, латунью и сталью и для наплавки на сталь  [c.146]

Дуговая сварка в защитных газах. Сварку меди и ее сплавов выполняют неплавящимся и плавящимся электродами. В качестве защитных газов для сварки меди служат аргон, гелий, азот и их смеси.  [c.413]

Дуговая сварка в защитных газах Сварку меди и медных сплавов в среде защитных  [c.66]

Сварка в защитных газах. Сварку меди выполняют неплавящимся и плавящимся электродом. В качестве защитных газов для сварки меди применяют аргон, гелий, азот или их смеси. Возможна также сварка меди в среде водорода. Наибольшее распространение получила сварка меди неплавящимся вольфрамовым электродом в аргоне высокой чистоты марок А и Б по ГОСТ 10157—62 (табл. 11-14). Металл толщиной более 4 мм сваривают с предварительным подогревом до температуры 800° С. Чем больше тол-  [c.669]

Наиболее старым и широко распространенным способом сварки меди является газовая сварка. В последнее время применяется дуговая сварка, а также сварка в защитных газах.  [c.315]

Для ручной, полуавтоматической и автоматической сварки в защитных газах медно-никелевого сплава, медно-никелевого сплава и меди с бронзой, лат> нью и сталью (углеродистой, легированной и коррозионно-стойкой), а также наплавки на сталь.  [c.671]

Д я ручной сварки в защитных газах меди, механизированной сварки под флюсом меди и лат> ни.  [c.672]

Сварка в защитных газах меди и ее сплавов проводится неплавящимся и плавящимся электродами. Наиболее часто применяют механизированную сварку вольфрамовым электродом с подачей присадочного металла в виде проволоки непосредственно в зону дуги. Реже используют сварку плавящимся электродом.  [c.118]

Для трубопроводов и изделий из меди и ее сплавов в условиях строительного производства применяется газовая сварка, дуговая сварка угольным или металлическим электродом и под флюсом, сварка в защитных газах, контактная сварка (см. гл. X) и холодная сварка.  [c.242]


Сварка в защитных газах. Медь хорошо сваривается автоматической сваркой плавящимся электродом в аргоне, азоте, гелии или в смеси аргона с азотом. Высокая теплопроводность меди обусловливает необходимость предварительного подогрева кромок деталей толщиной 5 мм и более до 200—250° С.  [c.245]

Дуговая сварка в защитных газах. Электрическая дуга горит в среде специально подаваемых в зону сварки защитных газов. При этом используют как неплавящийся, так и плавящийся электроды. Процесс можно выполнять вручную, механизированным или автоматическим способом. При сварке неплавящимся электродом изделий большой толщины применяют присадочную проволоку. В качестве защитных газов применяют углекислый газ, аргон, гелий, иногда азот для сварки меди. Наиболее распространены смеси газов аргон + кислород, аргон + гелий или аргон + углекислый газ + кислород. В процессе сварки защитные газы, подаваемые в зону горения дуги через сопло сварочной горелки, оттесняют атмосферные газы от электрода и сварочной ванны (рис. 1.5).  [c.12]

Сварочные горелки предназначены для подвода к месту сварки электродной проволоки, сварочного тока и защитного газа или флюса, а также для ручного перемещения и манипулирования ими в процессе сварки. При этом сварщик удерживает держатель в руке и перемещает его вдоль шва. Быстро изнашивающиеся части держателя (при сварке в защитных газах — горелок) — токоподводящий наконечник и газовое сопло, изготовляемые из меди. При сварке под флюсом на держателе устанавливают бункер для флюса.  [c.162]

Сварка меди и медных сплавов. Ручная дуговая сварка покрытыми электродами находит применение в основном для соединения деталей из меди. Сварка латуни и бронзы крайне ограниченна, что обусловлено наличием других, более технологичных способов сварки (например, сварка в защитном газе), а также фактическим отсутствием специализированных промышленных марок покрытых электродов.  [c.50]

Основными видами сварки меди являются ручная дуговая покрытыми электродами, автоматическая под флюсом, в защитных газах плавящимся и неплавящимся электродом, газовая. В связи с высокой теплопроводностью меди сварку ведут на повышенных по сравнению со сталью величинах тока. Например, при ручной дуговой сварке покрытыми электродами величина тока выбирается из расчета /<.в=(50ч-60) э, где — диаметр электрода сварка ведется на постоянном токе с подогревом до 200—250°С. Мощность газового пламени по расходу ацетилена выбирают из расчета для толщин б<10 мм ис,н,=150-6 л/ч, для 6>Ю мм Ос.н.=200-6 л/ч е использованием, нормального пламени и флюсов на основе буры.  [c.137]

При сварке меди и ее сплавов получение качественного шва — без пор, с требуемыми физическими свойствами — весьма затруднительно. Это связано с наличием в исходном металле закиси меди и высокой склонности меди к поглощению водорода. Возможна сварка меди и ее сплавов в защитных газах — аргоне и гелии, а также в азоте, который по отношению к этому металлу является инертным газом. Сварку ведут неплавящимися электродами — вольфрамовым и угольным (не для всех марок меди) на постоянном токе прямой полярности с подачей присадочной проволоки.  [c.388]

Ручная аргоно-дуговая сварка. При ручной сварке меди в защитных газах применяют инертные газы гелий  [c.197]

Ручная аргоно-дуговая сварка. При ручной сварке меди в защитных газах применяют инертные газы гелий и аргон. Сварку выполняют вольфрамовым электродом  [c.211]

Нельзя при сварке меди в защитных газах использовать в качестве присадки проволоку одинакового с ос-  [c.216]

Для Предохранения расплавленного металла от окисления применяют защитные газы — гелий, аргон, азот, водород, углекислый газ. Защитный газ подводится к сварочной дуге 1 через мундштук 2, в который вставлен вольфрамовый электрод 3. Дуга образуется между электродом и свариваемым металлом. Для заполнения шва в дугу вводится присадочная проволока 4. Этот способ (кроме сварки в углекислом газе) наиболее пригоден для сплавов алюминия, магния, меди и нержавеющих сталей. Сварка в углекислом газе применяется для низкоуглеродистых и некоторых специальных сталей Сварка в среде защитных газов может осуществляться также плавящимся электродом  [c.12]

Для раскисления меДи и разрушения закиси меди применяют вещества, активно реагирующие с кислородом, — алюминий, фосфор, кремний. Чтобы не допустить окисления, используют различные флюсы, покрытия или производят сварку в защитной среде нейтральных газов — аргона, азота, гелия. По окончании сварки рекомендуется быстро охладить изделие, например погрузить его в воду. Это улучшает пластические свойства сварного соединения.  [c.343]

При сварке меди и ее сплавов содержание кислорода в защитном газе не должно превышать 0,015—0,02%. Возможна сварка в гелии, азоте и с комбинированной защитой аргоном и азотом. Углекислый газ и смеси его с аргоном применяют только для сварки сталей.  [c.455]

Для сварки меди применяют следующие способы сварки газовую, угольным электродом, покрытыми металлическими электродами, автоматическую под флюсом угольным электродом, под плавлеными и керамическими флюсами, в защитных газах и другие способы.  [c.498]

Медь можно сваривать всеми основными способами. Из всех видов сварки плавлением наиболее распространенной является дуговая сварка (угольным электродом, плавящимся электродом, под флюсом и в защитных газах), однако она вызывает определенные трудности в связи с тем, что медь обладает высокой теплопроводностью, в 6 раз превышающей теплопроводность низкоуглеродистой стали. Вследствие этого сварку меди следует выполнять с предварительным и сопутствующим подогревами и о увеличенной погонной энергией. Свойства и свариваемость меди зависят от ее чистоты (с уменьшением содержания вредных примесей свариваемость улучшается). Соединение заготовок выполняют с минимальным зазором из-за высокой жидкотекучести ме-  [c.271]


ГОСТ 16038—70 Швы сварных соединений трубопроводов из меди и медно-никелевого сплава регламептируе формуй размеры подготовки кромок и выполненных сварных швов при механизированной сварке в защитных газах труб из меди и се сплавов.  [c.12]

Основная трудность при сварке латуней --испарение цинка. В результате снижается прочность и коррозионная стойкость латунных HiBOB. Пары цинка ядовиты, поэтому необходима интенсивная вентиляция или сварщики должны работать в специальных масках. При сварке в защитных газах преимущественно применяют сварку неплавящимся вольфрамовым электродом, так как при этом происходит меньшее испарение цинка, чем при использовании плавящегося электрода. При газовой сварке лучшие результаты получают при применении газового флюса. Образующийся на поверхности сварочной ванны борный ангидрид (В2О3) связывает пары цинка в шлак. Сплошной слой шлака препятствует выходу паров цинка из сварочной ванны. Латунь обладает меньшей теплопроводностью, чем медь, поэтому для металла толщиной свыше 12 мм необходим подогрев до температуры 150 С.  [c.235]

При сварке в защитных газах в качестве неплавящегося электрода используют лантанированные или иттрированные вольфрамовые электроды диаметром до 6 мм. В качестве присадочного материала используют проволоку из меди и ее сплавов, по составу близкую к основному металлу, но с повышенным содержанием раскислителей (МРЗТЦрБ  [c.458]

Головка может комплектоваться дополнительными узлами — приставками для сварки в защитных газах, для наплавки ленточным электродол , для сварки алюминия и. меди, для сварки двумя электродами и др.  [c.155]

Пом11мо сталей для изготовления листовых конструкций применяют и цветные металлы. В кислородном машиностроении применяют медь н латунь. В цистернах для перевозки к лoт и пищевых продуктов, корпусах судов на подводных крыльях — алюминий и его сплавы. Для этих конструкций используется преимущестЕепно сварка в защитных газах.  [c.168]

В СССР сварка в защитных газах получит еще большее развитие в текущем семилетии. К концу 1965 г. объем ее увеличится в шесть раз. Это непосредственно связано с запланированным к тому же сроку ростом (по сравнению с 1958 г.) производства алюлминия (почти в три раза), меди (почти в два раза), никеля, магния, титана, германия, кремния. Увеличивается производство также и других цветных и особенно редких металлов. Прн изготовлении изделий из сплавов цветных и редких металлов основным видом сварки будет, как и является теперь, сварка в среде защитных газов.  [c.115]

Для ручной сварки в защитных газах алюминиево-марганцевой бронзы, мышьяковистой латуни, меди и медно-нике. евого сп. ава с алюминиево-марганцевой бронзой, ручной и механизированной наплавки на сталь.  [c.672]

Сварку в защитном газе проводят с подачей в зону дуги через электро-додержатель струи защитного газа. Сварка выполняется как плавящимся, так и пепла-вящимся электродом и может быть ручной, полуавтоматической и автоматической. В качестве защитных газов применяют углекислый газ, аргон, гелий, иногда (для сварки меди) азот и смеси газов. Инертные газы (аргон, гелий) чаще используют для сварки легированных сталей и химически активных металлов (алюминий, титан и др.) и их сплавов.  [c.8]

Впервые идея сварки в защитных газах была предложена Н. Н. Бенардосом еще в прошлом столетии. В 20-х годах нашего столетия была разработана и получила применение атомноводородная сварка. В начале 40-х годов была предложена и применена для сварки легких металлов и сплавов сварка в среде гелия, а затем в среде аргона. Первоначально развилась сварка неплавящим-ся электродом и позднее сварка плавящимся электродом. В конце 40-х годов была предложена сварка в азоте, первоначально для сварки нержавеющих сталей, а затем для сварки меди и ее сплавов.  [c.3]

Сварки имеют несколько способов выполнения, которые обозначаются автоматическая— под флюсом (А), на флюсовой подушке (Аф), на флюсо-мед-ной подкладке (Ам), на стальной подкладке (Ас),с предварительным наложением подварочного шва (Апш), с предварительной подваркой корня шва (Апк) полуавтоматическая — под ( юсом (П), на стальной подкладке (Пс), с предварительным наложением подварочного шва (Ппш), с предварительной подваркой корня шва (Ппк) сварка в защитных газах — в инертных газах неплавящимся электродом с присадочньш материалом (ИН), с присадочным материалом (ИНп), плавящимся электродом (ИП), в углекислом газе (УП) электрошлаковая сварка — проволочным электродом (ШЭ) плавящимся мундштуком (ШМ) электродом большого сечения, соответствующим по форме поперечному сечению сварочного пространства (ШП).  [c.196]

Механизированная дуговая сварка выполняется с использованием проволоки из цветных металлов или на основе никеля. Механизированная сварка с использованием проволоки из цветного металла, например, марки МРЗКМцТ (на основе меди с добавками РЗМ, Si, Мп и Ti) имеет те же особенности, что и ручная дуговая сварка покрытыми электродами (марки ОЗЧ-2, ОЗЧ-6 и др.) со стержнем из цветного металла). Механизированная сварка ведется открытой дугой или в защитном газе (углекислом, азоте) проволокой диаметром 1,6...2 мм на постоянном токе обратной полярности силой 180...250 А при напряжении на дуге 25...35 В со скоростью подачи проволоки 170...250 м/ч, скорости сварки 25...35 м/ч и расходе защитного газа 5... 10 л/мин. Валики допускается наплавлять длиной до 200...300 мм с перерывом после каждого валика для охлаждения и его проковкой.  [c.364]

Механизированную сварку медных заготовок в защитных газах (аргоне и азоте) выполняют неплавящимся вольфрамовым или плавящимся электродом. В качестве материала для присадочного прутка или плавящегося электрода применяют проволоку из бронзы марок БрЦ0,8 БрКМцЗ-1 БрОЦ4-3, а также из меди М1 и М2. Ориентировочные режимы аргонодуговой сварки приведены в табл. 17.3.  [c.273]


Смотреть страницы где упоминается термин Медь Сварка в защитных газах : [c.134]    [c.224]   
Справочник сварщика (1975) -- [ c.412 ]



ПОИСК



Газы защитные для сварки

Защитные газы

Медиана

Медь Сварка

Медь и ее сплавы особенности сварки дуговой в защитных газах

Сварка в защитных газах

Сварка меди в среде защитных газов



© 2025 Mash-xxl.info Реклама на сайте