Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Платинирование

Водородный электрод для измерения потенциала можно получить, погружая пластинку платинированной платины в раствор, насыщенный водородом при давлении 1 ат (рис. 3.2), или, что более удобно, измеряют потенциал с помощью стеклянного электрода, который также обратим по отношению к водородным ионам. Заметим, что потенциал электрода равен нулю, если и активность водородных ионов, и давление газообразного водорода (в атмосферах) равны единице. Это и есть стандартный водородный потенциал. Таким образом, потенциал полуэлемента для любого электрода равен э. д. с. элемента, где в качестве второго электрода использован стандартный водородный электрод. Потенциал полу-элемента для любого электрода, определенный таким образом, называется потенциалом по нормальному стандартному) водородному электроду или по водородной шкале и обозначается или н. в. а-  [c.34]


Для защиты сооружений в морской воде с использованием внешнего тока могут быть рекомендованы коррозионностойкие аноды из плакированной платиной меди, сплава серебра с 2 % РЬ, платинированных титана или ниобия 12—14. Магниевые протекторы требуют замены примерно каждые 2 года, аноДы из сплава серебра с 2 % РЪ служат более 10 лет, а аноды из сплава, содержащего 90 % Pt и 10 % 1г, — еще дольше [13].  [c.223]

При электролизе с нерастворимыми анодами вместо графитовых лучше применять платинированные титановые аноды. Получают нх, следующим образом титан обезжиривают в парах трихлорэтилена, травят в кислом растворе, содержащем ионы фтора, после этого наносят слой платины (завешивая детали под током), из раствора следующего состава (г/л) при режиме электролиза  [c.76]

Поляризационные кривые, приведенные на рис. 15, снятые в щелочном электролите на платинированном чистом титане, показывают, что процесс разряда комплексных ионов платины на чистом  [c.77]

Полученные таким способом платинированные электроды были испытаны в качестве нерастворимых анодов при электролизе соляной, серной и азотной кислот при плотности тока до 10 А/дм Испытания прошли успешно, платинированный титан не отличался от платиновых анодов.  [c.78]

Химическое палладирование и платинирование  [c.86]

Одним из известнейших анодных материалов подобного рода является платинированный титан. О применении платиновых покрытий на так называемых вентильных металлах упоминалось еще в 1913 г. [18]. Титан представляет собой легкий металл (плотность 4,5 г см- ), способный к анодной пассивации. Пассивный слой при действующих напряжениях до 12 В практически может считаться электрически изд-  [c.204]

В случае анодных заземлителей станций катодной защиты, изготовленных из пассивируемых материалов, к качеству накладываемого постоянного тока особых требований не предъявляется при платинированных анодах положение получается несколько иным. Результаты прежних исследований [23—25], по которым при остаточной пульсации выпрямленного постоянного тока свыше 5 % потеря платины значительно увеличивается, пока продолжают обсуждаться, но не во всех случаях подтверждены. Всестороннего исследования причин и проявлений коррозии платины до настоящего времени, очевидно, еще не проведено. В принципе требования к величине коэффициента остаточной пульсации выпрямленного тока по-видимому должны повышаться с увеличением действующего напряжения и должны зависеть также и от эффективности удаления продуктов электролиза или от обтекания анодов. Однако повышенная скорость коррозии при низкочастотной остаточной пульсации (менее 50 Гц) может считаться доказанной. Уже начиная с частоты 100 Гц влияние остаточной пульсации невелико. Между тем именно в этом диапазоне частот получается остаточная пульсация тока мостовых преобразователей, работающих на переменном токе 50 Гц после трехфазных преобразователей эта частота намного выше (300 Гц), а величина остаточной пульсации выпрямленного тока по условиям схемы составляет 4 %. Опыт показал, что при оптимальных условиях работы анодов влияние остаточной пульсации невелико.  [c.205]


Платина на других вентильных металлах применяется предпочтительно там, где низкий критический потенциал пробоя титана вызывает неприемлемые ограничения его применимости. При катодной защите для этого могут иметься несколько причин. В случае хорошо проводящих сред можно без затруднений использовать высокие плотности анодного тока —в среднем около 600- 800 А-м- , а иногда до 10 А-м- и более. В плохо проводящих средах, например в пресной воде, допустимое действующее напряжение может оказаться недостаточным для обеспечения экономичной катодной защиты с применением платинирован-  [c.205]

Рис. 8.8. Платинированный анод из титановой проволоки для внутренней катодной защиты труб Рис. 8.8. Платинированный анод из <a href="/info/165574">титановой проволоки</a> для <a href="/info/495131">внутренней катодной защиты</a> труб
В таких случаях часто применяют корзиночные аноды, которые имеют сравнительно большую площадь поверхности и благодаря своей специальной конструкции могут работать при пониженных действующих напряжениях. В качестве корзинки используется цилиндр из платинированного титана, полученный вытяжкой, который приварен к титановому стержню. Этот стержень предназначается для подвода тока и заканчивается пластмассовой лапкой, в которой размещен кабельный ввод и которая одновременно используется как монтажная плита. Анод из металла, полученного вытяжкой, характеризуется в отличие от тарельчатого анода очень равномерным распределением плотности анодного тока даже при больших размерах. Это обеспечивается наличием большого числа углов и кромок у такого металла, которые предотвращают проявление эффекта острия только на наружных кромках анода.  [c.214]

Трубопроводы большого диаметра можно защищать изнутри стержневыми анодами из платинированного титана, у которых платиновое покрытие имеет только головка, расположенная в средней точке поперечного сечения анода. Вместо такой конструкции с ограниченной зоной защиты в резервуарах, а иногда и в трубопроводах применяют проволочные аноды f30]. При этом анодной поверхностью является титановая проволока диаметром 3 мм. Поверхность проволоки частично платинирована, причем длина платинового покрытия и расстояния между отдельными платинированными участками могут варьироваться в соответствии с предъявляемыми требованиями, в частности в зависимости от необходимой величины защитного тока. Наименьшая длина платинированных участков может составлять 30 мм, что соответствует площади поверхности около 3 см . При плотности анодного тока  [c.214]

А-м-2 это соответствует величине отдаваемого тока 0,12 А-с одного платинированного участка.  [c.215]

При использовании платинированных титановых анодных зазем-лителей пульсирующий ток может вызвать слишком сильную коррозию материала анода и соответственно преждевременное разрушение. В этом случае остаточная пульсация выпрямленного тока не должна превышать 5 /о (см. раздел 8.2.2).  [c.220]

С увеличением электропроводности воды анодная опасность коррозии увеличивается и в трубопроводах для рассола ей уже нельзя пренебрегать. Такие защитные мероприятия как нанесение покрытий обычно оказываются недостаточно надежными. Напротив, при помощи местной внутренней катодной защиты от коррозии согласно рис. 11.11. это вредное влияние может быть надежно устранено. В качестве анода с наложением тока от постороннего источника используют платинированный титан, а в качестве электрода сравнения — чистый цинк. Для  [c.264]

Катодная внутренняя защита труб ввиду ограниченной протяженности зоны защиты по условиям геометрии трубы практически невозможна. В отдельных случаях делаются попытки внутренней защиты местным протягиванием через трубу анодов из платинированной титановой проволоки (см. раздел 8,5.4).  [c.370]

Поскольку требовалось не допустить загрязнения питательной воды продуктами коррозии, в качестве материала для анода с наложением тока от защитной установки приняли частично платинированный титан. Для контроля и регулирования потенциала в резервуаре уста-  [c.383]


Рис. 20.7. Катодная внутренняя защита от коррозии корпуса напорного фильтра (высокого давления) при помощи анодов с наложением тока от постороннего источника / — стержневые аноды пз платинированного титана 2 —слой гравия 3 — донная решетка фильтра 4 — измерительные электроды 5 — защитная установка (с преобразователем, питаемым от сети) Рис. 20.7. <a href="/info/495131">Катодная внутренняя защита</a> от коррозии корпуса <a href="/info/39701">напорного фильтра</a> (<a href="/info/251457">высокого давления</a>) при помощи анодов с наложением тока от постороннего источника / — <a href="/info/39795">стержневые аноды</a> пз платинированного титана 2 —слой гравия 3 — донная решетка фильтра 4 — <a href="/info/28691">измерительные электроды</a> 5 — <a href="/info/39641">защитная установка</a> (с преобразователем, питаемым от сети)
Платинированный анод 214, 215 Платинированный титан 204 Плакирование 205 Повреждение покрытия в форме круга 127  [c.494]

В этом случае можно использовать и растворимые, и инертные аноды. Растворимые можно изготовлять из стали (обрезки стальных балок, рельсы и т.п.). Обычно применяемыми материалами для инертных анодов являются магнетит, кремнистый чугун (ферросилид), гранит, свинец, платинированные титан и ниобий. Для защиты  [c.65]

В системах анодной защиты применяются латунные стержни, покрытые слоем меди толщиной 600 мкм и платинированные слоем толщиной более 250 мкм. Размеры рабочей части этих катодов составляют длина 6,25 см и диаметр 4 см.  [c.74]

Измерения могут проводиться на образцах для ускоренных испытаний в виде пластин. Для проведения измерений применяют стеклянные полые трубки диаметром 25 мм и высотой 40 мм, наклеиваемые на образец. Образующаяся таким образом ячейка схематично представлена на рис. 5.1. В качестве вспомогательного электрода используется платинированная платина. При испытаниях в газовых средах для оценки защитных свойств этим методом используется специальное приспособление, позволяющее в момент измерения укреплять полые стеклянные цилиндры на окрашенных образцах. Схема такого приспособления показана на рис. 5.2. Рабочими поверхностями в этом случае являются участки поверхности на дне стеклянных сосудов. Для простоты расчетов целесообразно использовать стаканы с таким диаметром, чтобы образовывался электрод с поверхностью, кратной 1 см .  [c.101]

Так как электродные потенциалы играют очень большую роль в коррозионных процессах, то весьма важно знать значения этих потенциалов, а отсюда и действигельную разность потенциалов между металлом и раствором электролита. Однако абсолютные значения потенциалов до сих пор не удалось определить. Нет достаточно надежных методов экспериментального измерения или теоретического вычисления абсолютных значений потенциалов, и вместо абсолютных электродных потенциалов измеряют относительные, пользуясь для этого так называемыми электродами сравнения. Этот принцип определения значений электродных потенциалов основан на том, что если определить э. д. с. коррозионных элементов, составленных последовательно из большинства технических металлов и какого-нибудь одного, одинакового во всех случаях электрода, потенциал которого условно принят за нуль, то измеренные э. д. с. указанных элементов позволят сравнить электрохимическое поведение различных металлов. В качестве основного электрода сравнения принят так называемый стандартный водородный электрод, представляющий собой электрод из черненой (платинированной) платины, погруженный в раствор кислоты с активностью ионов Н+, равной 1 г пон1л. Через раствор продувается водород под давлением 1,01.3-10 н м -. Пузырьки водорода адсорбируются на платине, образуя как бы водородную пластинку, которая, подобно металлу, обменивает с раствором положительные ионы. На рис. 10 показано, как составляется цепь из водородного электрода и другого электрода при измерении относительных электродных потенциалов.  [c.23]

Кислородным электродом может служить платинированная платиновая пластинка, погруженная в электролит, насыщенный кислородом. Этот электрод особенно важен при изучении коррозии благодаря той роли, которую он играет в элементах диф рен-циальной аэрации, лежащих в основе механизмов щелевой и точечной коррозии.  [c.37]

Легирование никеля молибденом в значительной степени повышает его стойкость в восстановительных средах. Как в аэрированных, так и в деаэрированных кислотах эти сплавы имеют потенциалы коррозии более отрицательные, чем их Фладе-потен-циалы [4, 5], т. е. по определению 1 в гл. 5 их нельзя считать пассивными. Так, все коррозионные потенциалы никелевых сплавов с 3— 22,8 % Мо в насыщенном водородном 5 % растворе HjSO не отличаются более чем на 2 мВ от потенциала платинированного платинового электрода в том же растворе [4]. Несмотря на отрицательные значения коррозионного потенциала, сплав, содержащий, например, 15 % Мо, корродирует в деаэрированном 10 %  [c.361]

Гетерогенный катализ происходит на границах раздела твердое тело — газ или твердое тело — жидкая фаза (раствор). Механизм каталитического воздействия поверхности твердого тела заключается в адсорбции на поверхности катализатора реагирующих между собой молекул, в результате чего их концентрация в поверхностном слое возрастает на несколько порядков, а под действием энергии адсорбции ослабляются связи между частицами, составляющими молекулы, и, следовательно, снижается энергия активации. Не исключено и химическое взаимодействие между молекулами реагирующих веществ и адсорбента, т. е. катализатора (топохимические соединения). Высокоактивные катализаторы этого типа — тонко раздробленные металлы, нанесенные на какую-либо подложку, например, платинированный асбест, серебро или палладий, нанесенные на цеолиты, тонко раздробленный никель и т. д.  [c.298]

Электролиты платинирования могут быть как кислыми, так и щелочными, и практически всегда процесс электроосаждения идет с нерастворимыми анодами. Исходным продуктом для приготовления электролитов является хлорная платина Pt li или хлорплатинат натрия NajPt lo-OHaO.  [c.66]


Титановый анод вследствие образования при анодной поляризации плотной окнсиой пленки не проводит электрический ток. Покрытый тонким елеем платины он работает нормально, так как окисная пленка формироваться не может, причем платинированные титановые аноды остаются работоспособными даже при наличии пористого платинового слоя. Основная трудность при получении платинированного титана заключается в том, что поверхность титана даже в обычных условиях покрыта толстым слоем окислов, препятствующим получению прочно сцепленного покрытия.  [c.77]

В ряде случаев вместо платинированного титана в качестве нерастворимых анодов можно использовать палладироваиные аноды (например, при палладировании в щелочных и нейтральных электролитах). Кроме того, палладированный титан можно использовать для защиты от коррозии в условиях сильно агрессивной среды.  [c.78]

Поверхность титана перед нанесением палладиевого покрытия готовят точно так же, как и перед платинированием. Для того чтобы платинированные и палладироваиные аноды хорошо работали, необходима тщательная подготовка поверхности титана перед покрытием и соблюдение рекомендуемого режима электролиза при покрытии.  [c.78]

Перед покрытием титана платиной необходимо тщательно очистить его поверхность от оксидного слоя путем травления. Затем платину наносят электрохимическим или термическим способом или же механическим плакированием. При электрохимическом или термическом платинировании толщина слоя платины может составлять 2,5—10 мкм, Плаки-рованые слои платины обычно бывают более толстыми. В отличие от названных они не имеют пор и поэтому более стойки, но зато и гораздо дороже. Их платиновая поверхность ведет себя практически как компактная (цельная) платина, т. е. может нагружаться и более высокими действующими напряжениями, если неплакированная поверхность титана надежно изолирована от окружающей среды. Напротив, на более тонкие и пористые платиновые покрытия распространяются те же ог- раничения, что и для титана,, поскольку при более низкой электропроводности и повышенных напряжениях пленка окисла Ti02 разрушается в порах, вследствие чего платиновый слой может быть подорван и отжат от основного металла [20—22].  [c.205]

Для водных сред, например для защиты подводных стальных конструкций и сооружений в прибрежном шельфе, а также для внутренней защиты резервуаров, тоже применяют в основном цилиндрические аноды, конструкция которых описана в разделе 8.5.1. Кроме таких материалов как графит, магнетит и ферросилид, дополнительно используют еще и аноды из сплавов свинца с серебром, а также платинированный титан, ниобий или тантал. Впрочем, такие аноды обычно выполняют не сплошными, а в форме труб. В конструкциях из сплавов свинца с серебром это делают ввиду большой массы анодов и сравнительно малой плотности анодного тока в случае платинированных вентильных металлов коррозионному износу и без того подвергается только платиновое покрытие. К тому же трубчатая форма позволяет получить большую площадь поверхности и тем самым больший анодный ток. На подсоединения анодоа из сплавов свинца с серебром распространяются рекомендации, приведенные в разделе 8.5.1. Однако можно припаивать кабель и непосредственно к материалу анодов при помощи мягкого припоя, если обеспечена особо эффективная разгрузка кабеля от растягивающих напряжений. В случае титана это невозможно. Такие аноды должны быть снабжены (в отдельных случаях тоже привариваемым) резьбовым соединением, изготовленным также из титана. В этом случае кабель свинчивается с кабельным наконечником, который тоже может быть изготовлен из титана. Все соединение окончательно заливается литой смолой. Иногда и всю трубу заполняют подходящей заливочной массой. Ввиду плохой электропроводности титана целесообразно в случае сравнительно длинных анодов с большой нагрузкой осуществлять подвод тока параллельно на обоих концах.  [c.210]

Рис. 8,6. Стандартные стержневые аноды для внутренней катодной защиты резервуаров и труб (размеры —в миллиметрах) / — платинированная поверхность 2 — заливочная смола скочкаст № 281 3 —стеклянная проводка высокого давления с резьбой R1" или NPT1". Значения а, в я I (допустимый ток) для различных типов анодов Рис. 8,6. Стандартные <a href="/info/39795">стержневые аноды</a> для <a href="/info/495131">внутренней катодной защиты</a> резервуаров и труб (размеры —в миллиметрах) / — платинированная поверхность 2 — заливочная смола скочкаст № 281 3 —стеклянная проводка <a href="/info/251457">высокого давления</a> с резьбой R1" или NPT1". Значения а, в я I (допустимый ток) для различных типов анодов
Рис. 17.4. Крепление анодов из платинированного титана при их прокладке у морского дна / анод Pt/Ti 2 —бетон 3 — кабель NSS Нои 1X16 мм 4 —трубчатая свая 5 —труба для защиты кабеля Рис. 17.4. Крепление анодов из платинированного титана при их прокладке у морского дна / анод Pt/Ti 2 —бетон 3 — кабель NSS Нои 1X16 мм 4 —трубчатая свая 5 —труба для защиты кабеля
Аноды с наложением тока от постороннего источника на судах применяют в основном двух конструктивных форм (см. раздел 8.5.3). Конструктивное исполнение по Моргану применяется преимущественно при анодах из сплава свинца с серебром Плоские аноды в большинстве случаев выполняют из платинированного титана, В меньших масштабах применяют еще и круглые аноды из ферросилида, которые однако ввиду их механической непрочности нужно размещать в углублении и защищать крышкой. Свинцовосеребряные аноды РЬ—Ag и аноды из платинированного титана иногда применяются и совместно. Частота случаев применения анодов различного типа представлена в разд. 18.3. Несколько лет назад применяли еще и буксируемые за судном аноды из алюминия или платинированного серебра (см. раздел 8.5.3). Эти аноды однако вышли из употребления ввиду недостаточного подвода тока к носовой части судна.  [c.365]

Для защиты этих элементов судового оборудования применяют и протекторы, и защитные установки с наложением тока от внещнего источника. Материал протекторов выбирается в зависимости от рабочих сред для оборотных циклов с морской водой применяют цинк и алюминий, а для оборотных циклов с пресной водой — магний. Для защиты с наложением тока применяют аноды из платинированного титана, причем каждая защитная установка должна иметь свое самостоятельное питание. Плотности защитного тока зависят от материалов и от среды (см. также раздел 2.4).  [c.370]

Рис. 20.10. Конструкция насоса для химической промышленности, имеющего катодную защи-ту. (а — общий вид б — нагнетательный патрубок) / — бронза 2 — полипропилен 3— сталь 4 — политетрафторэтилен (тефлон ПТФЭ) 5 — поливинилхлорид (ПВХ) 6 — рабочее колесо со стержневым анодом (из платинированного титана) Рис. 20.10. <a href="/info/443767">Конструкция насоса</a> для химической промышленности, имеющего катодную защи-ту. (а — общий вид б — нагнетательный патрубок) / — бронза 2 — полипропилен 3— сталь 4 — политетрафторэтилен (тефлон ПТФЭ) 5 — поливинилхлорид (ПВХ) 6 — <a href="/info/29375">рабочее колесо</a> со <a href="/info/39795">стержневым анодом</a> (из платинированного титана)
На рис. 20.10 показана конструкция центробежного насоса с катодной защитой из оловянной бронзы G—SnBzlO по DIN 1705 [11], рабочее колесо которого выполнено в виде анода с наложением тока от внешнего источника, причем дополнительный стержневой электрод введен внутрь всасывающего патрубка. Еще один стержневой анод располагается в нагнетательном патрубке насоса (см. рис. 20.10,6). Рабочее колесо, стержневые аноды и защитная втулка вала выполнены из платинированного титана. Вал насоса изготовлен из сплава uAlllNi по DIN17665. Подшипники качения электрически изолированы от неподвижных деталей поливинилхлоридными втулками и закреплены в требуемом положении подшипниковыми крышками из твердого полиэтилена. Вал уплотняется сальниковой втулкой с набивкой втулка футерована поливинилхлоридом. Грундбукса сальника тоже изготовлена из поливинилхлорида. Передача усилия от электродвигателя обеспечивается через изолирующую муфту с круговыми зубьями и по-  [c.389]


Для изготовления катодов с наложением тока от постороннего источника могут быть использованы такие материалы, которые при ожидаемой катодной поляризации являются коррозионностойкими. В среде сильных кислот применяют платину, тантал или аустенитные хромоникелевые стали. При сульфонировании алканов и нейтрализации сульфоновых кислот в резервуарах с олеумом и серной кислотой применяют анодную защиту, причем катоды изготовляют из платинированной латуни [16]. Для защиты титановых теплообменников в ваннах для получения волокна рейона применяют катоды из свинца [17].  [c.393]


Смотреть страницы где упоминается термин Платинирование : [c.23]    [c.44]    [c.77]    [c.78]    [c.157]    [c.206]    [c.349]    [c.387]    [c.14]    [c.100]   
Смотреть главы в:

Защита металлов от коррозии  -> Платинирование

Гальванотехника драгоценных металлов  -> Платинирование

Покрытия металлов  -> Платинирование

Основы гальваностегии Часть 2 Изд.3  -> Платинирование


Гальванотехника справочник (1987) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте