Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вторая формулировка первого закона термодинамики

Вторая формулировка первого закона термодинамики 24 Второй закон термодинамики 56 Вынужденное движение 313 Вязкость 175  [c.473]

Отсюда следует вторая формулировка первого закона термодинамики Вечный двигатель первого рода невозможен .  [c.59]

Уравнения (4.10), (4.15) являются дифференциальной формулировкой первого закона термодинамики. Второй закон термодинамики записывается для первой и второй фаз соответственно в виде  [c.34]


Как видно из формулировки первого закона термодинамики, он устанавливает количественное соотношение между различными видами энергии при их взаимных превращениях. Однако этот закон ничего не говорит о том, при каких условиях та)кие превращения могут происходить. На этот последний вопрос дает ответ второй закон термодинам ики.  [c.70]

Различные формулировки третьего закона термодинамики остаются неизменными при отрицательных абсолютных температурах, если под абсолютным нулем температуры понимать О К, как положительной, так и отрицательной температуры. Температуры + 0К и —О К соответствуют совершенно различным физическим состояниям. Для первого система находится в состоянии с наименьшей возможной энергией, а для второго — с наивысшей. Система не может стать холоднее, чем +0К, так как она не может больше отдать энергию. Она не может стать горячее, чем —О К, так как она не может больше поглотить энергию. Принцип недостижимости абсолютного нуля формулируется следующим образом невозможно с помощью любой, как угодно идеализированной процедуры за конечное число операций охладить любую систему + О К или нагреть любую систему до —О К-  [c.121]

В результате анализа возникают по меньшей мере два вопроса. Во-первых, вопрос о физической сущности ограничения степени превращения внутренней энергии в кинетическую этот вопрос рассмотрим позднее. Во-вторых, вопрос о правильности формулировки задачи об истечении газа. Ведь формула (7.36) выражает первый закон термодинамики и вдруг оказывается, что применение этого закона — закона сохранения энергии — ограничено условием Сомнения, связанные со  [c.179]

Если бы не существовало ограничений, накладываемых вторым законом термодинамики, то это означало бы, что можно построить тепловой двигатель при наличии одного лишь источника тепла. Такой двигатель мог бы действовать за счет охлаждения, например, воды в океане. Этот процесс мог бы продолжаться до тех пор, пока вся внутренняя энергия океана не была бы превращена в работу. Тепловую машину, которая действовала бы таким образом, В. Ф. Оствальд удачно назвал вечным двигателем второго рода (в отличие от вечного двигателя первого рода, работающего вопреки закону сохранения энергии). В соответствии со сказанным формулировка второго закона термодинамики, данная Планком, может быть видоизменена следующим образом осуществление вечного двигателя второго рода невозможно. Следует заметить, что существование вечного двигателя второго рода не противоречит первому закону термодинамики в самом деле, в этом двигателе работа производилась бы не из ничего, а за счет внутренней энергии, заключенной в тепловом источнике.  [c.54]


Наконец, назвав принципиально неосуществимую тепловую машину, которая в противоречии с постулатом Томсона могла бы совершать механическую работу только за счет охлаждения одного лишь источника тепла, вечным двигателем второго рода (в отличие от вечного двигателя первого рода, который мог бы совершать работу вообще без затраты энергии, т. е. в противоречии с первым законом термодинамики), В. Ф. Оствальд дал наиболее лаконичную формулировку постулата Томсона Осуществление (вечного двигателя второго рода невозможно.  [c.55]

Если первый закон термодинамики характеризует процессы превращения энергии с количественной стороны, то второ й закон термодинамики характеризует качественную сторону этих процессов. Наиболее общая формулировка второго закона термодинамики любой самопроизвольный процесс является необратимым.  [c.113]

В настоящей главе в виде следствия 3 мы установили третье ответвление от вершины генеалогического древа термодинамики, т. е. от закона устойчивого равновесия. Первое ответвление (следствие 1) дало нам в гл. 4 обычную нециклическую формулировку первого закона . В гл. 5 второе ответвление (следствие 2) позволило установить принцип состояния. Слияние этих ответвлений в гл. 7 привело к известному уравнению сохранения энергии для системы, которое далее позволило получить общепринятую циклическую формулировку первого закона (интересно отметить, что эта формулировка во многих учебниках принимается в качестве отправной точки при изложении классической термодинамики).  [c.117]

Учебник Покровского, содержащий 368 страниц, имеет следующие наименования отдельных глав гл. 1—понятие о процессах. основы графического изображения процессов, работа процессов гл. 2— энергия и ее свойства гл. 3—учение об обратимости процессов гл. 4— понятие о машинах, приложение первого закона термодинамики к цикла.м гл. 5—учение о постоянных газах гл. 6— газовые машины и цикл Карно, к. п. д. мапшн гл. 7— основная формулировка второго закона термодинамики и вытекающие из нее следствия гл. 8— о физической сущности второго закона термодинамики гл. 9—учение о парах гл. 10—влажный воздух гл. И—течение упругих жидкостей. Течение без сопротивления.  [c.242]

С помощью повой фз нкции состояния—энтропии—мы получи.м вскоре более сжатую математическую формулировку второго закона. Формулировки, которые мы привели выше, —это аксиомы, выведенные из опыта. Пока второй закон следует считать в такой же степени эмпирически обоснованным, как и первый закон термодинамики. Тем не менее его смысл не столь непосредственно очевиден, как смысл первого закона. Последний становится интуитивно ясным, как только мы отождествим тепло с энергией невидимых движений и примем, что эта энергия также должна учитываться при формулировке универсального закона сохранения энергии.  [c.36]

В приведенных двух последних соображениях подчеркиваются количественная и качественная стороны процесса теплообмена. Количество переданного движения телом А телу Б не может быть больше, чем имеет само тело А, что является, как уже отмечалось, содержанием первого закона термодинамики. Качественная сторона процесса заключается в том, что движение, а значит и тепло, может передаваться лишь от тела более нагретого к телу менее нагретому и что эта передача может происходить лишь до тех пор, пока не сравняются скорости движения частичек обоих тел. Отсюда следует, что обратный процесс передачи движения от менее нагретого тела, частички которого имеют меньшие скорости, к более нагретому с большими скоростями частичек не- возможен. Невозможна, следовательно, и передача тепла от холодного к более теплому телу. Указанные соображения Ломоносова составляют содержание второго закона термодинамики в формулировке, высказанной Клаузиусом в 1850 г., т. е. спустя примерно 100 лет после Ломоносова.  [c.5]

М. Планк дал эту формулировку в своем курсе термодинамики, первое издание которого вышло в 1897 г. всего в Германии было 10 изданий, из них на русский язык переведено три 1898, 1900 и 1925 года изданий. Близкую по смыслу формулировку дал ранее (1851 г.) В. Томсон (лорд Кельвин)—один из создателей второго закона термодинамики. Вторым считают Р. Клаузиуса (1850 г.). Однако В. Томсон и Р. Клаузиус развили и обобщили идеи С. Карно, изложенные им в его знаменитом сочинении Размышления о движущей силе огня и о машинах, способных развивать эту силу (1824 г.). С. Карно считал, что тепловая машина не поглощает тепло, превращая его в работу, а передает его холодному телу, подобно тому, как вода, падая из верхнего резервуара в нижний, совершает на своем пути работу. Это и есть основная идея второго закона.  [c.39]


Опираясь на математические формулировки первого и второго законов термодинамики, можно строить теорию тепловых процессов, получившую название феноменологической термодинамики. Не изучая зачастую промежуточные стадии и механизм процесса.  [c.7]

Приведенные формулировки второго закона термодинамики, отражающие специфическую особенность теплоты, проявляющуюся при ее превращении, являются эквивалентными. Действительно, если допустить возможность самопроизвольного перехода теплоты от холодного источника к горячему, то последнему можно вернуть неиспользованную теплоту, и горячий источник расходовал бы всего удельной теплоты /а = /д, т. е. вся теплота, отнятая от теплоот-датчика, была бы превращена в круговом процессе в работу. Но это противоречило бы другим формулировкам второго закона. Следует еще раз подчеркнуть, что все формулировки второго закона термодинамики являются следствием наблюдений, т. е. второй закон, как и первый, является экспериментальным.  [c.36]

Подобно первому и второму законам, третий закон термодинамики имеет несколько различных по форме, но равноправных по существу формулировок, в каждой из которых подчеркивается то или иное следствие общего принципа. Одна из современных формулировок третьего закона термодинамики утверждает, что в любом равновесном изотерм-ном процессе в конденсированной системе при температуре стремящейся к абсолютному нулю, изменение энтропии стремится к нулю формулировка Нернста — Симона).  [c.362]

С точки зрения первого начала термодинамики в природе возможен любой процесс, который не противоречит закону сохранения энергии. Однако первое начало термодинамики не рассматривает вопроса о направлении происходящих процессов. Ответ на этот вопрос дает второе начало термодинамики, содержание которого может быть выражено в нескольких одинаковых по смыслу формулировках.  [c.47]

Исходя из количественной формулировки первого и второго законов термодинамики, можно получить уравнение, которое включает в себя оба закона.  [c.87]

ПОЧТИ целиком отнести на счет способа изложения термодинамики, в котором отправной точкой служит циклическая формулировка первого и второго законов, вместо того, чтобы исходить из рассмотрения нециклических процессов и переходить от них к циклическим процессам, как это сделано в настоящей книге.  [c.15]

Теперь генеалогическое древо термодинамики имеет вид, показанный на рис. 8.5, из которого видно, что путем логического развития закона устойчивого равновесия мы получили известные формулировки первого и второго законов . В процессе дальнейшего роста генеалогического древа термодинамики эти утверждения будут использованы для развития представлений о двух важнейших характеристиках системы — термодинамической температуре и энтропии.  [c.119]

Первая глава посвящена термодинамическим основам термоупругости. Изложение начинается с основных положений классической термодинамики. При рассмотрении второго закона термодинамики предпочтение дается новой его формулировке, разработанной профессором Киевского университета Н. Н. Шиллером в 1897—1901 гг., немецким математиком Каратеодори в 1909 г. и Т. А. Афанасьевой-Эренфест в 1925—1928 гг. Эта формулировка устанавливает общий эмпирический принцип о невозможности определенных процессов — принцип адиабатической недостижимости, удобный для математического выражения второго закона термодинамики в случае термодинамических систем, состояние которых определяется большим числом независимых переменных (деформируемых твердых тел и др.).  [c.6]

Основное положение термодинамики необратимых процессов, вытекающее из предположения о локальном термодинамическом равновесии, заключается в том, что первый и второй законы классической термодинамики справедливы и для локально равновесных макроскопических частей системы. Для математического выражения второго закона термодинамики в случае твердых деформируемых тел, состояние которых определяется большим числом независимых переменных, удобной является формулировка, разработанная  [c.6]

На основании первого и второго начал термодинамики можно определить лишь изменение энтропии. Для термодинамического определения абсолютного значения энтропии необходимы новые данные, которые могут быть получены при исследовании различных химических и физических процессов при очень низких температурах. Экспериментально установлено, что энтропия чистого кристаллического вещества при абсолютном нуле (или при температуре, близкой к нему) равна нулю. Это и есть формулировка третьего начала термодинамики. Исходя из этого экспериментального закона и с использованием других законов термодинамики, можно вычислить энтропию вещества и при более высоких температурах.  [c.84]

Выводы термодинамики, как науки об энергетических балансах и равновесиях, независимы от предположений о механизме, совершающемся в природе процессов. Первое начало термодинамики представляет собой общий закон сохранения энергии применительно к термическим явлениям. Второе начало термодинамики указывает на односторонность всех протекающих процессов, на стремление любой предоставленной самой себе системы к достижению конечного состояния равновесия. В совокупности первое и второе начала термодинамики позволяют дать в общем количественную формулировку условий равновесия, предсказать направление, в котором пойдет тот или другой процесс в данных конкретных условиях и степень его завершенности. Если из термодинамики следует, что в данных условиях какой-либо процесс невозможен, то это означает действительно полную невозможность его осуществления при помощи любого приспособления или катализатора -такую же невозможность, как создание вечного двигателя. Если же термодинамика устанавливает, что процесс возможен, то это указывает лишь на его принципиальную осуществимость. Реализация же этого процесса будет зависеть от того, с какой скоростью в рассматриваемых условиях будет двигаться состояние равновесия, т.е. от кинетических факторов.  [c.46]


Из того, что мы знаем о равновесных и неравновесных состояниях, следует, что при переходе от вторых к первым энтропия Зшеличивается и достигает максимального значения в состоянии термодинамического равновесия. Поскольку в изолированной системе все переходы идут именно в этом направлении, мы получаем, таким образом, количественную формулировку II закона термодинамики энтропия изолированной системы не может убывать.  [c.53]

Вторая формулировка для машины-двигателя требует некоторого пояснения. Под перпетуумом-мобиле второго ряда принято понимать машину, которая могла бы превращать всю подводимую к ней теплоту в работу. Такая машина, очевидно, имела бы термодинамический к. п. д., равный единице, и не нуждалась бы в низшем источнике теплоты, так как не имела бы теплового отброса. Работа такой машины не противоречила бы первому закону термодинамики, который констатирует лишь взаимопревращаемость различных видов энергии. Вместе с тем, как показывает опыт, работа такой машины противоречила бы второму закону термодинамики, требующему, чтобы работа тепловой машины протекала в определенном перепаде температур, т. е. при наличии высшего и низшего источников тепла.  [c.37]

Второй закон так же, как и первый, является обобщением многолетнего практического опыта. Сущность второго закона термодинамики может быть выражена в различных формулировках. Одной из них может. служить утверждение, что тепло самопроизвольно не может, переходить от менее нагретого тела к более нагретому. Подобно тому как с первым законом термодинамики связана функция внутренней энергии, идеи второго закона термодинамики концентрируются в понятии энтроппи — функции состояния, сущность которой будет выяснена несколько позже.  [c.43]

Определение температуры как физической величины, являющейся одной из фундаментальных в термодинамике, непосредственно связано с упомянутыми выше основными законами термодинамики. Обычно, исходя из первого закона тер-]лодинамики и используя формулировку Кельвина для второго закона, доказывают, что для обратимой тепловой машины, работающей по циклу Карно между температурами 01 и 02, отношение количества тепла Оь поглощенного при более высокой температуре 0ь к количеству тепла Оъ отданного при более низкой температуре 02, просто пропорционально отношению двух одинаковых функций от каждой из этих двух температур  [c.17]

Анализ особенностей тепловых процессов, выполненный Р. Клаузиусом, был далеко не очевиден, но логически безупречен. Обратив внимание на то, что формулировка второго закона термодинамики носит качественный характер, он задался целью найти его математическую форму. Он считал необходимым связать второй закон с некоторой характерной физической величиной, аналогично тому, как первый закон оказался связанным с существова1шем энергии, явился законом ее сохранения и превращения. Максимальный КПД идеальной тепловой машины, как впервые показал С. Карно, определяется соотношением  [c.81]

Примером проявления энтропии изолированной системы является теплообмен между телами при конечной разности температур (внешняя необратимость). Если н такой системе имеется два тела с разными температурами (7, > T ,), то согласно второму закону термодинамики (в формулировке Клаузиуса) самопроизвольный переход теплоты может происходить только от тела с большей температурой к телу с меньшей температурой. При этом элементарное изменение удельной энтропии первого тела составляет ds = — второго —d 2 = - -t1qlT2. Поскольку энтропия обладает аддитивным свойством, изменение удельной энтропии системы  [c.38]

Выражения (71), (75), (77) для обратимых и (86), (91) и (92) для необратимых циклов и процессов являются наиболее общими математическими (формулировками второго закона термодинамики. Все они содержат новую тер.модинамическую величину — энтропию, поэтому второй закон термодинамики можно назвать законом возрастания эптропии, в то время как первый закон — законом сохранения энергии системы. Энергия изолированной системы постоянна, а энтропии [)астет. У казанные выше выражения второго закона термодинамики в обобщенной (форме характеризуются неравенствами (87), (90) и (91), представлсишчми в (форме  [c.61]

Эта формулировка второго закона термодинамики очень близка по стилю и четкости к формулировке первого заковга, которую дал Фейнман (мы ее приводили на с. 86) и смысл которой аналогичен утверждению Существует величина, которая при всех изменениях, которые затрагивают только эту систему, остается постоянной. Это энергия системы .  [c.138]

Ранняя книга Кинана [3], опубликованная в 1941 г., оказала благотворное влияние на преподавание термодинамики в учебных заведениях для инженеров в США и Великобритании. Однако, поскольку в этой книге понятия и теоремы классической термодинамики равновесных процессов выводились из циклической формулировки первого и второго законов, в результате получилась нежелательная концентрация внимания на циклических процессах в ущерб более естественным нециклическим процессам. Напротив, закон устойчивого равновесия Хацопулоса и Кинана, из которого первый и второй законы получаются как следствия, по существу, относится к нециклическим процессам. В равной мере это справедливо и для теорем о термодинамической доступности энергии. К сожалению, в циклическом подходе природу истинного источника необратимости не удается выявить слишком долго, в то время как в нециклическом подходе она проясняется с самого начала. Более того, циклический процесс в какой-то степени является искусственной конструкцией. Естественные процессы, протекающие в физическом мире, имеют в основном нециклический характер, причем циклический процесс рассматривается как особый случай, в котором реализуется такая последовательность нециклических процессов, что конечное термодинамическое состояние системы совпадает с начальным. Далее, если исходить из недоказанных утверждений о циклических процессах, то не удается естественным путем прийти к теоремам о термодинамической  [c.13]

В заключение заметим следующее. Из того обстоятельства, что первое начало термодинамики есть не что иное, как закон сохранения энергии в применении к тепловым процессам, не следует, что это есть формулировка частного случая закона сохранения энергии. В действительности формулировка закона сохранения энергии в термодинамике является самой широкой, так как отображает изменение любого вида энергии (тепловой, механической, электромагнитной, химической и т. д.). Термодинамику определяют иногда как учение о взаимной связи, существующей во всех явлениях природы между теплотой и другими видами энергии. В этом определении теплота занимает особое положение, так как все виды энергии могут быть полностью превращены в тепловую, иными словами, всегда возможно построить такую периодически действующую машину, которая в каждом цикле превращала бы механическую или электромагнитную энергию в тепловую в то же время невозможно согласно второму началу термодинамики, к изучению которого мы перехрдим, построить такую периодически действующую машину, в каждом цикле которой происходило бы полное превращение взятой от теплового резервуара теплоты в механическую или электромагнитную энергию.  [c.35]


Этими простыми положениями Клаузиус (1822—1888) резюмировал содержание своей работы О различных удобных для приложений формах основных уравнений механической теории тепла . Эта работа увидела свет в 1865 г., пятнадцать лет спустя после открытия второго закона (сообщение о чем появилось в Poggendorf Annalen [1]). В этой чрезвычайно важной работе Клаузиус дает те основные формулировки первого и второго законов термодинамики, с которыми мы теперь уже знаконш .  [c.203]

Спустя десять лет, в 1875 г., Гпббс (1839—1903) положил эти фор-му.иировки в основу своей знаменитой статьи О равновесии гетерогенных веществ [2]. Здесь Гиббс, исходя из первого и второго законов термодинамики, дает наиболее общую формулировку условий равновесия для гетерогенных систем и впервые вводит понятие химического потенциала.  [c.203]

Сочинение М. А. Леонтовича имеет следующие построение и содержание Раздел 1 — Основные понятия и положения термодинамики (состояние физической системы и определяющие его величины работа, соверщаемая системой адиабатическая изоляция и адиабатический процесс закон сохранения энергии для адиабатически изолированной системы закон сохранения энергии в применении к задачам термодинамики в общем случае (первое начало термодинамики) количество тепла, полученное системой термодинамическое равновесие температура квазистатические (обратимые) процессы теплоемкость давление как внешний параметр энтальпия обратимое адиабатическое расширение или сжатие тела применение первого начала к стационарному течению газа или жидкости процесс Джоуля—Томсона второе начало термодинамики формулировка основного принципа).  [c.364]

Первые 8 глав учебника относятся к различным разделам, рассматриваемым в учебниках по термодинамике, особенно это касается гл. 8, имеющей следующее содержание законы термодинамики энергия как функция состояния циклы работа цикла цикл Карно цикл Карно с идеальным газом обратимые и необратимые процессы обратимость цикла Карно второй закон термодинамики формулировка его экономический коэффициент обратимых и необратимых машин другая формулировка второго закона термодинамики уравнение Клайперона—Клаузиуса зависимость поверхностного натяжения от температуры значение второго закона термодинамики.  [c.647]

Поворотным пунктом первого периода в развитии термодинамики, связанного с изучением тепловых машин, явилась работа Рудольфа Клаузиуса О различных удобных формах основных уравнений механической теории тепла , которая была опубликована в 1865 г. [61 см. также (7) ). В ней он ввел также понятие энтропии (от греческого слова -грол П — превращение). Клаузиус заканчивает свою работу краткими формулировками первого и второго законов термодинамики  [c.12]

Суи1,ествует много различных формулировок второго закона термодинамики, кажущихся, на первый взгляд, совсем непохожими друг на друга. По существу же, все они отражают свойства неравновесных процессов, лишь подчеркивая только те или иные стороны этих явлений. Приведем две наиболее распространенные формулировки.  [c.123]

В первой части книги рассмотрены основные законы термодинамики, термодинамические процессы, дифференциальные уравнения термодинамики и истечения газов и паров. Кроме того, да ю изложение циклов двигателей внутреннего сгорания, газотурбинных, паротурбинных установок и атомных электростанций. Вторая часть посвящена изложению законов теплопроводности при стационарном и нестационарном режимах, теории подобия, конвективного теплообм иа и излучения. В каждой главе помешены числовые примеры. В да1том издании (второе вышло в 197.5 г.) улучнюна редакция, уточнены терминология, формулировки, приведены новые данные.  [c.248]

После крушения теории теплорода теплота окончательно рассматривается как энергия движения составляющих тело материальных частиц (атомов, молекул). Но между теплотой и механической энергией вскоре обнаружились принципиальные отличия. Например, при торможении автомобиля его тормозные колодки нагреваются, но обратный процесс абсолютно невозможен — сколько бы мы ни нагревали колодки, автомобиль все равно останется на месте. Закон сохранения и превращения энергии, раскрывая количественную сторону превращений энергии, ничего не говорит о принцигшальных качественных отличиях между ее различными формами. Можно указать на другие принципиальные особенности тепловых явлений. Одним из самых очевидных наблюдений является то, что при различных видах работы часть энергии выделяется в виде теплоты. В природе существует тенденция к необратимому превращению различных видов энергии в теплоту, поскольку обратное превращение тепла в работу, за исключением изотермических процессов, невозможно. Другой, не менее очевидной особенностью тепловых явлений является то, что нагретые тела всегда стремятся прийти в равновесие с окружающей средой. Но и в этих процессах передачи теплоты существует односторонность, которую Р. Клаузиус сформулировал в качестве тепловой аксиомы Теплота не может сама собой переходить от тела холодного к телу горячему . Значение этого положения оказалось настолько важным, что его стали рассматривать как одну из формулировок второго начала термодинамики. Л. Больцман писал Наряду с общим принципом (законом сохранения и превра]цения энергии. — О. С.) механическая теория тепла установила второй, малоутешительным образом ограничивающий первый, так называемый второй закон механической теории тепла. Это положение формулируется следующим образом работа может без всяких ограничений превращаться в теплоту обратное превращение тепла в работу или совсем невозможно, или возможно лишь отчасти. Если и в этой формулировке второй принцип является неприятным дополнением к первому, то благодаря своим последствиям он становится гораздо фатальнее .  [c.79]


Смотреть страницы где упоминается термин Вторая формулировка первого закона термодинамики : [c.362]    [c.54]    [c.12]    [c.479]    [c.216]    [c.33]    [c.183]   
Техническая термодинамика. Теплопередача (1988) -- [ c.24 ]



ПОИСК



Второй закон термодинамики Формулировка второго закона термодинамики

Закон второй

Закон первый

Закон термодинамики

Закон термодинамики второй

Первая формулировка

Первая формулировка первого закона термодинамики

Первый закон термодинамики

Первый и второй законы термодинамики Первый закон термодинамики

Термодинамика

Термодинамика второй

Термодинамики закон второй первый

Термодинамики первое

Формулировка закона

Формулировки второго закона термодинамики

Формулировки первого закона термодинамики



© 2025 Mash-xxl.info Реклама на сайте