Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соединения Демпфирование конструкционное

Демпфирование, связанное с потерями на трение в неподвижных соединениях, называют конструкционным.  [c.69]

При составлении системы дифференциальных уравнений движения механизма с упругими звеньями и самотормозящейся передачей в форме (43.20) не учитывалось влияние рассеяния энергии при колебаниях, обусловленное упругим несовершенством соединений или конструкционным демпфированием. Это позволило получить условия, характеризующие движение механизма, в наиболее простом виде. Поскольку в реальных механизмах рассеяние энергии при колебаниях оказывает существенное влияние лишь  [c.270]


Гистерезис. Во многих случаях разделение полной силы на упругую и диссипативную является условным, а зачастую и вообще физически неосуществимым. Последнее относится прежде всего к силам внутреннего трения в материале упругого элемента и к силам конструкционного демпфирования, связанного с диссипацией энергии при деформации неподвижных соединений (заклепочных, резьбовых, прессовых и т. д.),  [c.279]

Конструкционное демпфирование в неподвижных соединениях. Наряду с внешними демпфирующими факторами на колебания механических систем заметное влияние могут оказать энергетические потери внутри самой конструкции (конструкционное демпфирование). Эти потери происходят из-за трения в кинематических парах, а также в соединениях типа прессовых, шлицевых, резьбовых, заклепочных и т. п. Хотя такие соединения принято называть неподвижными, в действительности при их нагружении неизбежно возникают малые проскальзывания по контактным поверхностям на соответствующих относительных перемещениях силы трения совершают работу.  [c.282]

Следует заметить, что при вычислении логарифмического декремента колебаний (или коэффициента потерь) в более сложных машинных конструкциях нужно принимать во внимание и так называемое внешнее трение. Этот вид потерь обусловлен трением в подвижных деталях машины, например в подшипниках, а также в неподвижных соединениях типа заклепочных, сварных, болтовых. Последние носят название конструкционного демпфирования. Теоретические оценки конструкционных потерь основаны на рассмотрении сухого трения и проводятся в настоящее время лишь в простейших соединениях [250, 263]. Для очень сложных машинных конструкций внешнее трение может оказаться преобладающим. Приведем экспериментально измеренные значения логарифмического декремента колебаний некоторых сложных машинных конструкций [85]  [c.223]

К разновидностям гистерезисных потерь относится так же так называемое конструкционное демпфирование — рассеяние энергии за счет трения в неподвижных соединениях (прессовых, болтовых, заклепочных, шпоночных, шлицевых и т. п.).  [c.12]

Полагаем, что рассеяние энергии в зубчатых передачах при линейных колебаниях происходит в основном в подшипниковых опорах зубчатых колес и в шлицевых и шпоночных соединениях. Принимаемое допущение основывается на результатах экспериментально-теоретических исследований, выполненных рядом авторов [73 81]. Как показывают эти результаты, рассеяние энергии при колебаниях за счет внутреннего неупругого сопротивления в материале валов редуктора пренебрежимо мало по сравнению с указанными видами конструкционного демпфирования.  [c.92]


В механизмах силы сопротивления чаще всего представляют собой силы трения, возникающие в кинематических парах и неподвижных соединениях деталей. В последнем случае речь идет о так называемом конструкционном демпфировании, возникающем на площадках контакта деталей при колебаниях, например в стыках, в резьбе и т, п. [20, 47, 52, 63]. Иногда природа сил сопротивления связана с видом демпфирующего устройства, специально предназначенного для увеличения диссипативных свойств системы. Такие устройства могут быть фрикционными, гидравлическими, пневматическими.  [c.39]

Конструкционное демпфирование в неподвижных соединениях. Коллектив авторов под ред. Я. Г. Пановко, Изд. Академии наук Латв. ССР, 1960.  [c.385]

Известные экспериментальные данные по демпфирующим свойствам конструкций представляют собой величины модальных коэффициентов демпфирования в долях от критического. Поэтому коэффициенты а и /3, входящие в уравнение (3.57), могут быть также определены через эти величины. Тем самым учитываются различные механизмы диссипации энергии, имеющие место в реальных конструкциях, и внутренние - за счет гистерезисных явлений, и внешние - конструкционные, обусловленные наличием зазоров, люфтов, разнообразных соединений и т.п.  [c.112]

Составными являются конструкции, имеющие механические средства крепежа, такие, как заклепки, болты и винты. К подобным конструкциям относятся и обшивка со стрингерами на заклепках, являющаяся элементом фюзеляжа самолета, и составные блоки дизельных двигателей. Примерами цельных или сварных конструкций являются звукопоглощающие оболочки и лопатки турбин. Цельные конструкции обычно имеют высокое начальное демпфирование, при котором коэффициент потерь может достигать значения 0,05. Это значение намного превышает то, которое можно получить в сварных или цельных конструкциях, потому что демпфирование за счет соединений будет минимальным, и измерения дают значение коэффициента конструкционных потерь, сопоставимое с потерями в самом материале, т. е. около 10- . .. 10-5 для стальных или алюминиевых конструкций. Поэтому увеличение коэффициента демпфирования, скажем, в десять раз для сборных конструкций является гораздо более сложной задачей, чем для цельной или сварной конструкции. Различным случаям применения должны соответствовать различные способы обработки материалов и конструктивные приемы, повышающие демпфирующую способность, что зависит от демпфирующих свойств исходной конструкции.  [c.40]

ПРОБЛЕМЫ ТЕОРИИ КОНСТРУКЦИОННОГО ДЕМПФИРОВАНИЯ В НЕПОДВИЖНЫХ СОЕДИНЕНИЯХ  [c.209]

Настоящая работа посвящена последнему виду потерь на трение, который ниже называется конструкционным демпфированием Влияние конструкционного демпфирования на динамические процессы в механических системах известно давно, но лишь в последнее время стали появляться теоретические исследования, проливающие свет на закономерности рассеяния энергии вследствие трения в неподвижных соединениях. Разумеется, что термин неподвижное соединение следует понимать условно, так как при анализе процессов, протекающих в сочленениях при их циклическом нагружении, необходимо учитывать деформации сочлененных элементов, сопровождающиеся малыми проскальзываниями по контактным поверхностям.  [c.209]

Систематические исследования задач конструкционного демпфирования ведутся в течение последнего десятилетия в Советском Союзе и за рубежом (см. литературу в конце статьи). Они относятся к упрощенным типовым схемам и строятся в предположении, что материал элементов соединений совершенно упругий и фрикционные свойства контактных поверхностей описываются законом Кулона. При этих предположениях представляется возможным произвести исследование гистерезисных свойств типовых конструкций при их медленном нагружении (по симметричному или асимметричному циклам) и, следовательно, записать уравнение движения механической системы, в которых демпфирующие свойства отображены достаточно надежно.  [c.210]

Таким образом, резонансные колебания — часто неизбежное явление, и задача состоит в том, чтобы обеспечить надежную работу и в условиях резонанса. Одним из мероприятий по снижению динамических напряжений в рабочих лопатках является демпфирование. Как видно из соотношения (16.9), динамические напряжения при резонансе обратно пропорциональны декременту колебаний т). В свою очередь, значение фактического декремента колебаний определяется рассеянием энергии в материале рабочей лопатки, характеризуемой декрементом колебаний ri , и рассеянием энергии в связях и соединениях между хвостовиком и ободом диска, между торцом лопатки и приклепанным бандажом, между лопаткой и проволочной связью, свободно вставленной в отверстие лопатки (демпферная связь). Это демпфирование определяет значение конструкционного декремента г . Таким образом  [c.444]


Значение конструкционного декремента колебаний г) также зависит от множества факторов от уровня напряжений, силы контакта между трущимися поверхностями, размеров соединений и т.д. В целом декремент конструкционного демпфирования в несколько раз больше, чем коэффициент демпфирования в материале.  [c.444]

Конструкционное демпфирование возникает в местах соединений лопаток с диском, а при наличии бандажной леиты и проволок, — также в местах их соединений с лопатками. В турбинных лопатках основное демпфирование происходит в замковых соединениях. Оно зависит от амплитуды колебания (возрастая с ее 0,032 увеличением), растягивающего усилия (уменьшаясь с ростом этого усилия), а также от температуры 153, 56, 6в].  [c.259]

КОНСТРУКЦИОННОЕ ДЕМПФИРОВАНИЕ В НЕПОДВИЖНЫХ СОЕДИНЕНИЯХ  [c.141]

Коэффициенты поглощения в соединениях турбинных лопаток. В качестве элементов конструкционного демпфирования пакетов турбинных лопаток часто используются бандажи, бандажные полки, а также демпферные проволоки в виде прут ков с круговыми осями, проходящих через отверстия в лопатках. С помощью этих среДств и различных их комбинаций коэффициент поглощения повышается до 0,2— 0,3, тогда как чисто внутреннее грение характеризуется значениями ф = 0,02 -г- 0,03.  [c.143]

Под конструкционным демпфированием обычно понимают поглощение энергии колебаний на трение в так называемых неподвижных соединениях (прессовых, резьбовых, шлицевых, заклепочных и др.) при их циклическом деформировании [32]. Расчетные методы [36, 95] позволяют выявить характерные особенности демпфирующей способности соединений от их конструктивных параметров, параметров их силового нагружения и отдельных технологических факторов. Однако надежные оценки могут быть получены только в результате экспериментального исследования натурных конструкций.  [c.329]

Для многих механических систем конструкционное демпфирование обычно значительно превосходит демпфирование, обусловленное рассеянием энергии в материале деформируемых элементов, и последним можно пренебречь. Соотношение между указанными видами демпфирования существенно зависит не только от вида соединения и материала демпфируемых элементов, но и от параметров нагружения.  [c.329]

Для упругих систем с неподвижными соединениями, обладающими сравнительно высоким уровнем поглощения энергии в случае несущественного влияния инерционных сил на условия работы фрикционных контактов и форму деформирования системы, с успехом используют метод статической петли гистерезиса, Хорошее согласование характеристик демпфирования при статическом или динамическом режимах нагружения позволяет предполагать независимость конструкционного демпфирования от частоты циклического деформирования.  [c.329]

Конструкционные вяжущие вещества завоевывают все новые и новые позиции в сфере производства автомобильных кузовов. Их успешно применяют в элементах подкрепления панелей капота для частичной замены точечной сварки, а также при соединении ветрового стекла с металлической рамой. Соединения, выполненные с помощью конструкционных вяжущих материалов, имеют некоторые преимущества. Кроме того, получается равномерное распределение напряжений по всей площади соединения. Поскольку эти вяжущие материалы имеют низкую температуру плавления, их можно применять для соединения деталей из воспламеняющихся материалов. Так как вяжущие материалы заполняют зазоры, то в таких соединениях уменьшается коррозия. Устраняются неровности между соединяемыми сваркой деталями. Конструкционные вяжущие материалы, обладающие способностью поглощать вибрации, могут применяться для демпфирования колебаний в узловых соединениях тонкостенных оболочек.  [c.149]

Конструкционным демпфированием называют влияние энергетических потерь, возникающих вследствие действия сил сухого трения на контактных поверхностях в прессовых, болтовых, заклепочных, шлицевых и других соединениях при колебаниях механических систем. Как правило, конструкционное демпфирование значительно превосходит демпфирование, создаваемое действием внутреннего трения в материале деталей. Средние логарифмические декременты колебаний для различных типов станков имеют следующие значения  [c.341]

В простых соединениях с четкой схемой интенсивность конструкционного демпфирования может быть определена предварительным расчетом. За меру этой интенсивности принимают площадь петли гистерезиса, развивающегося при циклическом деформировании соединения. Для расчетного определения уравнений отдельных ветвей петли обычно принимают закон Кулона, причем одновременно с анализом развития зон трения учитывают деформации в сопрягаемых элементах системы.  [c.341]

Конструкционное демпфирование в простых соединениях  [c.343]

Демпферы колебаний — см. Гасители колебаний Демпфирование колебаний параметрических — Влияние 363—365 -- конструкционное в механических системах 341—343, 494 --конструкционное в соединениях деталей 343—346 — Интенсивность — Методы оценки 341 — Обозначения 343 — Примеры 344—346 Дивергенция крыльев тонких 469, 476, 487 — Скорость критическая 477, 478 --оболочек цилиндрических круговых, обтекаемых потоком газа 493 Динамика статистическая механических систем 513—544  [c.551]

Аэродинамическое демпфирование. При анализе аэродинамической неустойчивости важную роль играет суммарный коэффициент потерь гибкого сооружения, обусловленный конструкционным демпфированием (внутренним трением в соединениях и в материале сооружения) и аэродинамическим демпфированием, вызванным движением сооружения в потоке ветра  [c.81]


Поскольку материалом для подкрепляющего слоя, как правило, является металл, то коэффициент потерь г]з можно в большинстве случаев полагать равным нулю. Что касается коэффициента потерь т]1, то он должен соответствовать демпфированию исследуемой резонансной формы колебаний. Во многих случаях, например для сварных и сборных конструкций, конструкционное демпфирование почти такое же, как и демпфирование, определяемое свойствами материала, поэтому здесь можно полагать т) =0. Однако в конструкциях с сильным демпфированием в местах соединений типа заклепочных или болтовых конструкционное демпфирование tji может оказаться важным фактором, и его следует учитывать при исследовании ди-ламического поведения.  [c.275]

Очевидно, что наиболее вероятной причиной существенного разброса резонансных напряжений по лопаткам, если предполагать отсутствие упругой и аэродинамической связанности 1между ними, является различие их индивидуальных характеристик демпфирования. Разброс характеристик демпфирования, если он имеется, прежде всего приходится относить к разбросу в демпфировании замковых соединений, поскольку существенное различие демпфирования в материале лопаток, изготовляемых из одного материала, мало вероятно, тем более, что величина его на фоне конструкционного и аэродинамического дегмифирования обычно мала. Исследование зам ков тина елка показывает, что демпфирование может быть существенным. В значительной степени оно зависит от геометрических соотношений размеров замка, а ТЕчхже распределения нагрузок от центробежных сил по его зубьям [45]. Это позволяет предполагать возможность разброса демпфирующих свойств по лопаткам, ибо в пределах допусков на изготовление всегда имеются отклонения геО(метрических размеров замков различных лопаток, которые могут сказаться на распределении нагрузо к по зубьям.  [c.167]

Паиовко Я. Г. Проблемы теории конструкционного демпфирования в неподвижных соединениях. — Труды III совещания по основным проблемам теории машин и механизмов, М. Машгиз, 1963, с. 209 — 234.  [c.449]

Соединение слоев составного стержня связями (заклепками, болтами) обычно осуществляют с предварительным натягом, в результате чего слои оказываются прижаты один к другому. Взаимному сдвигу слоев при этом будут препятствовать не только соединяющие элементы, но и силы трения между слоями. Учет сил трения при расчете составных стержней сводится к экспериментальному и теоретическому определению той части сдвигающего усилия по шву, которая воспринимается силами трения [9, 12]. Замечательной особенностью жестких соединений в составных стержнях является их способность рассеивать энергию при циклическом нагружении. Это явление называют конструкционным демпфированием [3]. Сущность конструкционного демпфирования заключается в том, что деформация жестко соединенных элементов может вызвать проскальзывание по контактным поверхностям, в результате чего силы трения совершат необратимую работу, которая исключается из общего баланса энергии деформации. В зависимости от характера касательных сил, действующих по контактным повмхностям, различают швы чисто фрикционные и упруго-фрикционные. В чисто фрикционных швах касательные усилия, взаимодействуя между слоями, реализуются только в виде сил трения в упруго-фрикционных швах взаимному проскальзыванию слоев препятствуют как силы трения, так и упругие связи сдвига. Рассматривая конструкционное демпфирование в составных балках, примем следующие обозначения  [c.474]


Смотреть страницы где упоминается термин Соединения Демпфирование конструкционное : [c.221]    [c.34]    [c.474]    [c.14]    [c.479]    [c.233]    [c.234]    [c.448]    [c.233]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.343 , c.346 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.343 , c.346 ]



ПОИСК



Демпфирование

Демпфирование колебаний параметрических конструкционное в соединениях деталей 343—346 — Интенсивность — Методы оценки 341 — Обозначения 343 Примеры

Демпфирование конструкционное

Конструкционное демпфировани

Конструкционное демпфирование в неподвижных соединениях (М, Н, Вульфсон, Я, Г, Пановко)

Конструкционное демпфирование в простых соединениях

Пановко, Проблемы теории конструкционного демпфирования в неподвижных соединениях



© 2025 Mash-xxl.info Реклама на сайте