Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инверсия эффективная

Применение известных методик нахождения параметров МДП-струк-ТУР по низкочастотным ВФХ позволяет определить при заряде МДП-структуры постоянным током в области низких полей напряжение плоских зон, напряжение инверсии, эффективный заряд диэлектрика, емкость диэлектрика, толщину диэлектрической пленки.  [c.125]

Повышение эффективности поиска новых конструктивных решений методом проб и ошибок обеспечивается применением эвристических приемов изобретательской деятельности, таких, как, например, инверсия, аналогия, метод мозгового штурма и т. д.  [c.13]


Для создания инверсии в полупроводниках используют четыре типа возбуждения инжекцию носителей заряда, электронную накачку, ударную ионизацию (лавинный пробой) и оптическую накачку. Наибольшую эффективность имеют два первых типа накачки, которые и получили самое широкое распространение.  [c.946]

Мощность лазера была резко увеличена при добавлении к СО 2 молекулярного азота Nj. Возрастание выходной мощности объясняется резонансной передачей энергии от возбужденных молекул N2 молекулам СО2. Возбуждение молекул N3 в электрическом разряде ударами электронов весьма интенсивно почти 30% от полного их числа переходит на долгоживущий уровень, энергия которого совпадает с верхним рабочим уровнем молекулы СО2, поэтому столкновения второго рода между возбужденными молекулами N2 и невозбужденными молекулами СО2 оказываются весьма эффективными при осуществлении инверсии. Соотношение парциальных давлений СО2 и N2 в лазере обычно берется в пределах от 1 1 до 1 5. Суммарное рабочее давление несколько миллиметров ртутного столба.  [c.45]

Однако для получения достаточно большой эффективной мощности генерированного излучения необходимо, помимо инверсии населенности энергетических уровней, выполнять ряд соответствующих условий. Активное вещество помещается в объемный резонатор — своего рода ящик с отражающими стенками. Как известно, для эффективного усиления колебаний определенной частоты резонатор должен иметь размеры порядка длины волны. Однако в оптическом диапазоне длин волн резонатор, настроенный на одну единственную волну, будет иметь слишком малые размеры.  [c.507]

Адиабатное дросселирование может быть использовано в качестве эффективного способа охлаждения газов. Разумеется, газ будет охлаждаться только в том случае, когда его состояние находится в той области состояний, в которой а,. > О, т. е. в области нод кривой инверсии.  [c.245]

N2—-/Vi)/(A ]p—N2 )— , характеризующее эффективность накачки, наз. коэф. инверсии. Величина / зависит от отношения вероятностей релаксац. переходов между разными уровнями и увеличивается при увеличении отношения / //.  [c.334]

Инверсную заселенность между колебательными уровнями молекул МОЖНО получить не только в электрическом разряде, но и путем нагревания среды до больших температур и последующего резкого охлаждения. Одним из эффективных способов охлаждения газа является сверхзвуковое истечение его через сопла. Лазеры, использующие данный метод получения инверсии, называются газодинамическими. Наиболее изученным и перспективным с точки зрения технологического применения является газодинамический лазер (ГДЛ) на СО2 (рис. 4.12).  [c.148]


Схема уровней молекулы СО2 показана на рис. 4.13. Она имеет вид ряда постепенно сближающихся с ростом энергии колебательных уровней, каждый из которых представляет в свою очередь набор вращательных подуровней. Аналогично молекуле СО2 из-за малого расстояния между вращательными подуровнями и эффективного обмена энергий между ними при столкновениях распределение молекул СО по вращательным подуровням описывается формулой Больцмана (4.4). Из этой формулы видно, что наиболее благоприятные условия создания инверсии имеют место для переходов Р-ветви, т. е. с Д/ = = + 1. Согласно (4.4) отношение заселенностей двух  [c.151]

Рабочая смесь в СО-лазере включает помимо активной молекулы СО ряд дополнительных компонент N2, Не, О2, Хе. Наличие азота в смеси, так же как и в СО2-лазере, приводит к более эффективному заселению верхних лазерных уровней и облегчает получение инверсии. Роль гелия в активной среде СО-лазера сводится к повышению теплопроводности. Так же как и в случае СО2-лазеров, он является основным компонентом смеси в системах с диффузионным охлаждением. Небольшое количество кислорода вводится в СО-лазеры для обеспечения стабильности состава рабочей смеси. С этой же целью применяется и Хе.  [c.153]

Мы показали, каким образом можно использовать три или четыре энергетических уровня какой-либо системы для получения инверсии населенностей. Будет ли система работать по трех- или четырехуровневой схеме (и будет ли она работать вообще ), зависит от того, насколько выполняются рассмотренные выше условия. Может возникнуть вопрос зачем использовать четырехуровневую схему, если уже трехуровневая оказывается весьма эффективной для получения инверсии населенностей Однако дело в том, что в четырехуровневом лазере инверсию получить гораздо легче. Чтобы убедиться в этом, прежде всего заметим, что разности энергий между рабочими уровнями лазера (рис. 1.4) обычно много больше, чем kT, и в соответствии со статистикой Больцмана [см., например, формулу (1.8)] почти все атомы при термодинамическом равновесии находятся в основном состоянии. Если мы теперь обозначим число атомов в единице объема среды как Nt, то в случае трехуровневой системы эти атомы первоначально будут находиться на уровне 1. Переведем теперь атомы с уровня 1 на уровень  [c.17]

Как мы уже отмечали, основные переходы иона Nd + —это переходы, совершаемые тремя электронами, принадлежащими оболочке 4/. Эти электроны экранируются восемью внешними 5s-и 5р-электронами, Соответственно уровни энергии в стекле с неодимом в основном располагаются так же, как и в кристалле Nd YAG. Поэтому и наиболее интенсивный лазерный переход имеет длину волны % ж 1,06 мкм, Однако в стекле из-за неоднородного уширения, обусловленного локальными неоднородностями кристаллического поля стеклянной матрицы, линии лазерных переходов намного шире. В частности, основной лазерный переход с Х=1,06 мкм примерно в 30 раз шире, поэтому максимальное сечение перехода приблизительно в 30 раз меньше, чем в кристалле Nd YAG. Разумеется, более широкая линия благоприятна для работы в режиме синхронизации мод, в то время как меньшее сечение необходимо для импульсных высокоэнергетических систем, поскольку пороговая инверсия для паразитного процесса УСИ (усиление спонтанного излучения) [см. (2.153)] соответственно увеличивается. Таким образом, по сравнению с Nd YAG в стекле с неодимом до включения УСИ может быть запасено в единичном объеме больше энергии. Наконец, поскольку полосы поглощения в стекле с неодимом также много шире, чем в кристалле Nd YAG, а концентрации ионов Nd + обычно вдвое больше, эффективность накачки стержня из стекла с неодимом приблизительно в 1,6 раза больше, чем в стержне из Nd YAG тех же размеров (см. табл. 3.1). Однако наравне с этими преимуществами стекла с неодимом по сравнению с кристаллом Nd YAG стекло обладает весьма серьезным ограничением, связанным с его низкой теплопроводностью, которая приблизительно в десять раз меньше, чем в Nd YAG. Это существенно ограничивает применения лазеров на стекле с неодимом импульсными системами при небольшой частоте повторения импульсов (с 5 Гц), чтобы избежать проблем, связанных с нагревом стержня.  [c.338]

Промышленностью изготавливаются аргоновые лазеры с водяным охлаждением мощностью 1—20 Вт, генерирующие на синем и зеленом переходах одновременно или только на одной линии при использовании конфигурации рис. 5.4, а. Также выпускаются маломощные (<1 Вт) аргоновые лазеры с воздушным охлаждением. В обоих случаях выходная мощность над порогом резко увеличивается с ростом плотности тока ( Я), так как в аргоновом лазере, в противоположность тому, что происходит в Не—Не-лазере, нет процессов, приводящих к насыщению инверсии. Однако КПД лазера очень мал (< 10- ), поскольку мала квантовая эффективность ( 7,5 % см. рис. 6.11) и возбуждение электронным ударом происходит на множестве уровней, которые не связаны эффективным образом с верхним лазерным уровнем. Аргоновые лазеры широко используются для накачки непрерывных лазеров на красителях, для множества научных применений (взаимодействие излучения с веществом), в лазерных принтерах, в лазерной хирургии и в техническом оснащении развлекательных программ.  [c.357]


Изучение особенностей релаксационных явлений в многоатомных газах и газовых смесях с учетом диссипативных процессов (вязкости, теплопроводности и т. д.) представляет большой интерес, особенно в связи с быстрым развитием газовых и газодинамических лазеров (ГДЛ). При теоретическом изучении газовых сред с инверсией населенностей квантовых уровней основными являются следующие проблемы построение и решение различных моделей уравнений релаксационной гидродинамики вычисление для этих уравнений коэффициентов переноса исследование кинетики и определение эффективных сечений соударений различных атомных и молекулярных компонентов.  [c.105]

А.В. Мартыновым и В.М. Бродянским проанализировано влияние дроссель-эффекта [112]. Для идеального газа или газа, находящегося при температуре инверсии или при относительно низком давлении на входе, характеристики вихревых труб выходят из начала координат (рис. 2.10,5). При а,. > О характеристики смещаются вниз, а при а, < О — вверх, так как при этих условиях дросселирование приводит к уменьшению и к увеличению вверх относительно горизонтальной оси. Примечательно, что даже при отрицательном дроссель-эффекте вихревая труба позволяет осуществлять охлаждение части вводимого исходного потока, так как энергетическая эффективность энергоразделения в  [c.54]

Первый процессор аппаратно реализует дискретную свертку в пространстве сигналов. В качестве такого процессора используют серийно выпускаемые процессоры массивов, оптимизированные для обработки больших массивов данных и на эффективное выполнение матричных арифметических операций типа инверсия и транспонирование матриц. Процессор массивов имеет параллельную структуру, магистральную организацию и осуществляет конвейерную обработку массивов данных. Введение в состав вычислительного комплекса томографа СП, составляющего обычно не более 30 % стоимости комплекса на базе мини-ЭВМ позволяет уменьшить время обработки информации при восстановлении высокоинформативных изображений до нескольких секунд.  [c.470]

Связь ИЗА и ПЗА с величиной выбросов вредных веществ представляется очевидной, так как колебания, например, скорости ветра могут при одном и том же количестве дымовых выбросов существенно изменить ИЗА. Следовательно, прогноз факторов, определяющих ПЗА, и учет этого прогноза при планировании природоохранных мероприятий может дать значительный эффект. С другой стороны, при анализе годовой динамики ИЗА необходимо делать поправку на изменение метеорологических факторов, т. е. также учитывать ПЗА, с тем чтобы оценивать эффективность природоохранных мероприятий. Эти выводы приобретают еще большее значение, если учитывать те неблагоприятные с точки зрения рассеяния выбросов факторы, которые характеризуют климат рассматриваемого района частые приподнятые и приземные инверсии температур, слабые ветры и тумапообразование при низких температурах. Все это способствует созданию повышенных концентраций вредных выбросов в атмосфере. В связи с этим, учитывая постоянный рост теплопотребления в Сибирском регионе от теплоэнергетических источников, необходи-  [c.259]

ТЭС мощностью 100 МВт постоянно работает па угле с содержанием серы 5%, Предположим, что эта ТЭС находится в центре города, застройка которого имеет форму круга радиусом 10 км, и что на высоте 500 м существует инверсия температуры, из-за которой эффективно задерживаются все загрязняющие выбросы. Допустим, что эти загрязнители равномерно перемешаны в воздушном бассейне над городом. Какова будет концентрация окислов серы черея 24 ч  [c.332]

В первых экспериментальных наблюдениях явления внедрения разряда в поверхностный слой твердого диэлектрика (А.Т.Чепиков) при использовании в качестве модельного материала пластичного фторопласта при пробое в толще материала (в поле продольного среза образца) отчетливо фиксировался обугливающийся след от канала разряда, а на образцах горных пород - воронка откола материала. Этими опытами были начаты систематические исследования физических основ способа и многообразных технологических его применений. Данная разновидность способа разрушения твердых тел электрическим пробоем, использующая эффект инверсии электрической прочности сред на импульсном напряжении, получила название электроимпульсного способа разрушения материалов (ЭИ). Работы многих исследователей свидетельствуют, что гамма пород и материалов, склонных к ЭИ-разрушению, достаточно обширна. Главными предпосылками для разрушения материалов таким способом является их склонность к электрическому пробою и хрупкому разрушению в условиях импульсного силового нагружения. Электрическому пробою подвержено большинство горных пород и руд, различные искусственные материалы -продукты пффаботки или синтеза минерального сырья, а именно те, которые по электрическим свойствам могут быть отнесены к диэлектрикам и слабопроводящим материалам. За пределами возможностей способа остаются лишь руды со сплошными массивными включениями электропроводящих минералов. По условиям разрушения к трудно разрушаемым из диэлектрических материалов относятся лишь не склонные к хрупкому разрушению в естественных условиях пластмассы и резины. Но и в данном случае применение метода охрупчивания материалов глубоким охлаждением делает ЭИ-метод разрушения достаточно эффективным."  [c.12]

Если для создания первого такого механизма потребовались многие, десятилетия, то уже в ближайшие годы непосредственно после его изобретения были предложены многочисленные направ-ляющ,ие устройства, конструктивно различные и разного назначе- ВИЯ, но реализующие все тот же принцип инверсии. Этот факт является веским подтверждением высокой эффективности синтеза, построенного на использовании геометрических аналогий.  [c.18]

ХИМИЧЕСКИЙ ЛАЗЕР—газовый лазер, в к-ром инверсия населённостей образуется в результате хим. реакций. Возможность создания X. л. основана на том, что продукты многих экзотермич. хим. реакций образуются преим. в возбуждённых состояниях. Большинство X. л. работает на колебательно-вращат. переходах двухатомных молекул. Возбуждённые молекулы эффективно образуются, в частности, в результате экзотермич. реакций замещения  [c.411]


При газоразр я д н о м способе возбуждения активные частицы рабочего тела подвергаются воздействию поддерживаемого в нем электрического разряда. Заселение уровня осуществляется в результате столкновения частиц среды между собой, а также с электронами газового разряда. Правильно выбирая среднюю энергию электронов путем изменения электрического поля и давления газа в разряде, можно добиться эффективного возбуждения активных частиц и осуществлять инверсию в больших объемах. Последнее время, в связи с развитием техники сильноточных пучков электронов, большой инте-  [c.33]

Способы возбуждения СО-лазеров практически не отличаются от СО2. Они эффективно накачиваются электронным ударом при передаче энергии от возбужденной молекулы N2 в химических реакциях. Важным с практической точки зрения отличием СО-лазера является более жесткое требование эффективного охлаждения рабочей смеси. Инверсия в СО-лазере исчезает уже при температуре смеси 350...400 К. Оценочные расчеты, проделанные для случая диффузионного охлаждения, показывают, что предельная вкладываемая на единицу длины газоразрядной трубки электрическая мощность снижается от 6 до 3 Вт/см при повышении температуры стенок от 77 до 300 К. С учетом реального при этих температурах т)эо 0,5...0,1 погонная мощность излучения СО-лазера будет снижаться от 300 до 30 Вт/м. Приведенные в литературе эксперим.ентальные данные подтверждают возможность получения мощностей 10 Вт с КПД 0,5 на смесях при температуре жидкого азота и резкое снижение выходных характеристик при повышении температуры стенок до комнатной.  [c.153]

В 1961 г. Е. Снитцером в качестве рабочего тела лазера с оптической накачкой был предложен ион неодима, помещенный в матрицу из стекла. Схема основных лазерных уровней иона неодима приведена на рис. 5.5. В отличие от рубинового лазер не неодиме работает по четырехуровневой схеме. Излучение лампы накачки активно поглощается целой системой полос, лежащих в диапазоне длин волн от 900 до 350 нм с временем жизни 10 "...10 с. В результате эффективных безызлучательных переходов возбуждение с этих уровней передается на метастабильный уровень " 3/2 > время жизни которого в случае стеклянной матрицы лежит в диапазоне 10 ". ..10 с в зависимости от концентрации неодима и марки стекла. Наиболее интенсивная линия люминесценции соответствует переходу на уровень V,, 2 с Х = 1,06 мкм. Ширина этой линии составляет 20...40 нм. Нижний лазерный уровень /и/г поднят над основным на 2,2-10 см . Из-за малого времени жизни этого уровня относительно безызлучательных переходов (10. ..10 ) и его низкой равновесной заселенности инверсия в данной схеме возникает при сравнительно низких уровнях возбуждения 1 Дж/см и таким образом, четырехуровневая схема ионов позволяет устранить один из наиболее серьезных недостатков рубиновых %/г м " ti,S-to n- лазеров.  [c.177]

Принцип действия газодинамического лазера можно кратко описать следующим образом (рис. 6.22). Предположим, что вначале газовая смесь находится при высокой температуре (например, Т = 1400 К) и высоком давлении (например, р = 17 атм) в соответствующем резервуаре. Поскольку газ первоначально находится в термодинамическом равновесии, у молекулы СО2 будет большой населенность уровня 00 1 (порядка 10% населенности основного состояния см. рис. 6.22,6). Разумеется, по сравнению с этой населенность нижнего уровня является более высокой ( 25%), и, следовательно, инверсия населенностей отсутствует. Предположим теперь, что газовая смесь истекает через какне-то сопла (рис. 6.22, е). Поскольку расширение является адиабатическим, температура поступательного движения смеси становится очень низкой. За счет VT-релаксации населенности как верхнего, так и нижнего лазерных уровней будут стремиться к новым равновесным значениям. Однако, поскольку время жизни верхнего уровня больше времени жизни нижнего, релаксация нижнего уровня произойдет на более ранней стадии процесса расширения (рис. 6.22,6). Таким образом, ниже по потоку от зоны расширения будет существовать достаточно широкая область с инверсией населенностей. Протяженность этой области L приближенно определяется временем, необходимым для передачи возбуждения от молекулы N2 молекуле СО2. При этом оба лазерных зеркала выбирают прямоугольной формы и их располагают так, как показано на рис. 6.22, е. Такой способ создания инверсии населенностей будет эффективным лишь в  [c.375]

Своеобразный характер в случае газовых активных сред приобретает такой общий метод создания инверсии, как оптическая накачка. В силу малой плотности газов их резонансные линии поглощения узки. Поэтому оптическая накачка может быть эффективна, если источник накачки достаточно монохроматичен (обычно используются лазерные источники). При электроннолучевом возбуждении газовых сред происходит ионизация газа электронами высокой энергии. Основное преимущество электронного пучка связано с его высокой проникающей способностью, что позволяет вводить значительную энергию в активную среду с большим давлением. Электронный пучок в газовых лазерах может выполнять различные функции. Чаще всего его используют для создания объемнооднородных газовых разрядов. Однако пучок электронов можно использовать и непосредственно для создания инверсной заселенности в газовых системах. Поскольку основная часть энергии, теряемой быстрыми электронами в газе, расходуется на ионизацию атомных частиц, то наиболее эффективные механизмы преобразования энергии пучка в энергию возбу-  [c.42]

Как следует из эксперимента и расчетов, при температурах смеси Гопт 200-f-300° достигается максимальная инверсия. Если температура доходит до некоторой критической величины кр 500—600 °С, то инверсная заселенность лазерной смеси исчезает. Таким образом, температура газа является одним из самых важных параметров, определяюш,их выходную мош,ность С02 Лазера. Для достижения оптимальных лазерных характеристик необходимо осуш,ествлять эффективное охлаждение лазерной смеси.  [c.47]

В работе [62] показано, что поперечная неоднородность инверсии газовых лазеров приводит к эффективной селекции основного типа колебаний ЕНц даже в случае, когда его потери энергии близки к потерям энергии высших мод. Таким образом, применение выпуклых зеркал в волноводном резонаторе ГЛОН может обеспечить одномодовый режим генерации с высокой выходной мощностью и уменьшенной расходимостью излучения, т. е. волноводные резонаторы с выпуклыми зеркалами являются полной аналогией открытых неустойчивых резонаторов [5 ]. Некоторые из этих выводов, полученные на основе численного моделирования формирования полей основных типов колебаний в волноводных резонаторах, получили и экспериментальное подтвержденйе [92]. Вернемся теперь к основному исходному уравнению волноводного резонатора с цилиндрической симметрией (3.75). Рассмотрим резонатор с плоскопараллельными зеркалами ( fi = 0). С Учетом того, что поверхность плоского зеркала является поверхностью равной фазы, рассмотрим влияние отверстий связи на характеристики типов колебаний исследуемого резонатора. Для этого необходимо решать на ЭВМ уравнение (3.75) с учетом — = gi — 0. Результаты этих расчетов можно найти в работе Гю1. Они проделаны для фиксированного диаметра одного из отвер-  [c.168]


Третий и четвертый члены в правой части уравнения (4.144) описывают изменение инверсии рабочих уровней под действием накачки и спонтанных переходов. Если длительность генерируемых импульсов настолько мала, что за время, равное их длительности, изменение инверсии под действием накачки и за счет спонтанных переходов невелико, то третьим и четвертым членами в уравнении (4.144) можно пренебречь. Это, как правило, справедливо для режима модулированной добротности. В случае модуляции добротности (исключая пассивные методы с использованием фото-тропных веществ) изменение добротности соответствует изменению во времени коэффициента полных потерь к от пот (О-Необходимо отметить, что V в уравнении переноса (4.146) — так называемая эффективная скорость фотонов в резонаторе с активным и фототропным элементами. Она позволяет избежать математических трудностей, связанных с тем, что активная и фото-тропная среды находятся в различных областях пространства и учитывает реальное замедление фотонов в активной среде (скорость распространения v — с/п) и в фототропной (скорость распространения Кф =с1пф). Для случая, когда используется полностью система уравнений (4.144) — (4.146), т. е. при введении фототропного затвора в резонатор, формула для эффективной скорости движения фотонов в резонаторе может быть записана в виде  [c.222]

Из сравнения (2.26а) с (2.3) видно, что пороговая инверсия населенности а ктивной среды три малом пОдре излучения точно совпадает со стационарной инверсной на се л ни остью среды, когда поле излучения и мощность накачки лазера могут быть большими. Это объясняется эффективным взаимодействием поля излучения с инвертирован нюй активной средой. Действительно, хотя и мощность накач1ки при развитой стационарной генерации может быть заметно выше пороговой, однако принципиально возможная большая инверсная населенность ак-  [c.58]


Смотреть страницы где упоминается термин Инверсия эффективная : [c.61]    [c.948]    [c.913]    [c.381]    [c.383]    [c.384]    [c.385]    [c.585]    [c.692]    [c.311]    [c.447]    [c.170]    [c.41]    [c.116]    [c.219]    [c.379]    [c.399]    [c.421]    [c.41]    [c.82]    [c.57]   
Введение в нелинейную оптику Часть2 Квантофизическое рассмотрение (1979) -- [ c.19 ]



ПОИСК



Инверсия



© 2025 Mash-xxl.info Реклама на сайте