Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плотность тепловой мощности

Отношение тепловой мощности А/1 к объему проводника Sl называется плотностью тепловой мощности  [c.185]

Плотность тепловой мощности 185 Пограничный слой 128  [c.299]

Объемная плотность тепловой мощности в  [c.232]

Обработка стали термическая 332 Обусловленность вычислительной задачи 123 Объемная плотность тепловой мощности 232 Огнеупор 348 Огнеупорность 348  [c.515]


Лазерная сварка вследствие высоких значений плотности тепловой мощности в облучаемой зоне характеризуется высокой локальностью нагрева. Она позволяет сваривать металлы с различными теплофизическими характеристиками, в труднодоступных местах, поскольку это бесконтактный способ сварки, а также в любой прозрачной для данного излучения атмосфере или среде. В настоящее время для данной сварки применяются импульсные твердотельные лазеры и газовые лазеры непрерывного действия.  [c.429]

Среды, в которых плотность не есть функция одного только давления, т. е. для которых нельзя подобрать никакой функции Ф(р), такой, что имеет место (ИЛ), носят название бароклинных. Здесь плотность р является пятой неизвестной функцией, подлежащей определению, равноправной с функциями V,, v , р, и потому четырех наших уравнений (уравнение неразрывности и три уравнения движения) недостаточно для решения задачи. Для исследования движения в общем случае бароклинной сжимаемой жидкости оказывается необходимым учет нового фактора — притока энергии. Это обстоятельство вводит в рассмотрение две новые величины температуру (абсолютную) жидкости Т и так называемую плотность тепловой мощности притока энергии е, т. е. количество энергии, получаемое единицей объема жидкости в единицу времени.  [c.61]

Несмотря на перечисленные преимущества, до недавнего времени сварку с использованием оптического излучения не применяли из-за отсутствия источников с высокой яркостью света. Применение света для сварки стало практически возможным с созданием оптических квантовых генераторов (ОКГ, лазеров), яркость которых чрезвычайно высока. Создаваемая ими плотность тепловой мощности в зоне облучения достаточна для расплавления (и испарения) всех известных материалов, что позволяет решать многие сварочные задачи технически и экономически более эффективно, чем другими существующими методами.  [c.52]

В проекте реактора ВГР по принципу одноразового прохождения активной зоны шаровыми твэлами мощностью 500 МВт с уран-плутониевым топливным циклом приведены данные по температуре газа и топлива активной зоны с профилированием тепловыделения и без профилирования. Оптимальная концентрация— рс/рм=350, средняя объемная плотность теплового потока в зоне — 5 кВт/л. Активная зона высотой 568 см и диаметром 473 см окружена графитовым отражателем толщиной 40 см сверху, 150 см снизу и 100 см сбоку и заполнена шаровыми твэлами диаметром 60 мм. Применение двух зон с разным обогащением снижает радиальную неравномерность и повышает температуру гелия на выходе из реактора от 810 до 950° С.  [c.21]


Тепловая мощность, МВт Электрическая мощность, МВт Средняя объемная плотность теплового потока, кВт/л  [c.33]

При применении шаровых твэлов в реакторах ВГР с высокой объемной плотностью теплового потока возникает необходимость увеличения удельного массового расхода теплоносителя. Диапазон изменения чисел Re в реакторах с шаровыми твэлами лежит в пределах S-IO —5-10 (при номинальной мощности реакторов). К сожалению, большинство исследований по определению гидродинамического сопротивления слоя шаров относится к области чисел Re<10 .  [c.57]

Увеличение тепловой мощности реактора даже при сохранении неизменным принятого значения объемной плотности теплового потока qv также приводит к уменьшению критерия энер-  [c.93]

При j> 120 А/мм величина К остается постоянной для обратной полярности — К = 0,92, для прямой полярности — К =, 1. При сварке переменным током независимо от плотности тока К =. Коэффициент а = 0,0165 при сварке в среде защитных газов, а = 0,0156 при сварке под слоем флюса. Оптимальные значения для коэффициента формы провара должны находиться в пределах 0,8 < у р < 4, При значениях у р < 0,8 возрастает склонность швов к горячим трещинам, а при > 4 нерационально используется тепловая мощность дуги, что приводит к повышенному короблению конструкций.  [c.48]

Плотность теплового потока на наружных поверхностях стенки определяется мощностью внутренних источников теплоты  [c.285]

Мощность источника (стока), т. е. объемная плотность теплового потока qy,— количество теплоты, выделяемое (поглощаемое) единицей объема тела в единицу времени единицей этой величины является джоуль на кубический метр в секунду [Дж/(м -с)] или ватт на кубический метр (Вт/м ).  [c.210]

Геометрические размеры г , г , r.j, г , теплопроводности материалов расположение тепловыделяющего слоя, а также параметры, соответствующие граничным условиям температуры стенок температуры теплоносителей Т,,,, плотности тепловых потоков /ст. мощности внутренних источников теплоты q , коэффициенты теплоотдачи а приведены в таблицах исходных данных (см. табл. 21.9, 21.10). Индексы Ь>, 2 , 3 при "к и (7 относятся соответственно  [c.319]

С увеличением скорости движения теплоносителей увеличиваются Re = wl/v, коэффициент теплоотдачи а и плотность теплового потока q = (lAt. Однако вместе со скоростью пропорционально растет гидравлическое сопротивление и расход мощности на насосы, прокачивающие теплоноситель через теплообменный аппарат. Существует оптимальное значение скорости, определяемое сопоставлением увеличения интенсивности теплообмена и более интенсивного роста гидравлических сопротивлений с увеличением скорости.  [c.220]

Пример 1-9. По стержню из нержавеющей стали диаметром 10 мм про. ходит электрический ток, вызывающий объемное выделение теплоты мощностью Qu = 2,4- 10 Вт/м . На поверхности стержня поддерживается температура /с = 30°С. Найти температуру на оси стержня to и плотность теплового потока на внешней поверхности стержня, если коэффициент теплопроводности стали А, = 15 Вт/(м °С).  [c.34]

Во всех выкладках данного раздела пренебрегаем кривизной боковой поверхности расплава. В данном разделе ив 14 в качестве положительного направления для потоков энергии принято направление от индуктора к расплаву (по нормали к поверхности последнего). Соответственно плотность потока мощности тепловых потерь Рх,к имеет отрицательные значения и вводится < =-Рт,к-  [c.14]

Если бы тепловое излучение Земли распределялось равномерно, то плотность теплового потока была бы 7,3-10- Дж/(см -с). Однако из-за неравномерности излучения есть районы, где имеет место более интенсивный тепловой поток. В одном таком районе, а именно в долине Гейзеров, штат Калифорния, есть Гео-ТЭС, которые используют такой тепловой поток и преобразуют его в электрическую энергию. Суммарная мощность этих электростанций около 400 МВт при КПД 25 %. Предположим, что площадь, занимаемая геотермальным источником, составляет 30 км и только 10 % этой площади непосредственно используется электростанциями. Какова концентрация теплового потока в данном районе  [c.44]


Плотность потока нейтронов ( 0,5 МэВ) во внутренней полости ТВС в средней плоскости реактора составляет, ио экспериментальным данным (77], (0,7- 1,8) 10 нейтр./(см -с) при тепловой мощности канала 600—1500 кВт тепловыделение в алюминии 2,2—5,5 Вт/г, в графите до 4 Вт/г. Спектр быстрых нейтронов ф( ), рассчитанный >методом Монте-Карло, приведен на рис. 2.1.,  [c.76]

Хотя в некоторых случаях работа теплоотдающей поверхности при кризисе возможна, для ядерного реактора наступление кризиса обычно считается недопустимым с точки зрения надежности конструкции твэлов. Эксплуатационные и экономические характеристики АЭС и значительной степени определяются запасами до предельно допустимой мощности и критической плотности теплового потока. Уменьшение коэффициента запаса повышает вероятность выхода твэлов из строя, что вызывает недовыработку электроэнергии и увеличение топливной составляющей затрат на электроэнергию. Увеличение коэффициента запаса повышает теплотехническую надежность твэлов, но снижает выработку электроэнергии и увеличивает постоянную составляющую затрат на электроэнергию. Поэтому Коэффициент запаса должен выбираться и по показателям надежности реактора и по технико-экономическим характеристикам АЭС и обеспечивать минимальные затраты на производство электроэнергии.  [c.85]

ЗАКОН [Джоуля — Ленца плотность тепловой мощности тока в проводнике равна произведению квадрата плотности тока на удельное сопротивление проводника Дюлонга и ГТти молярная теплоемкость простых химических веществ при постоянном объеме и температуре, близкой к 300 К, равна универсальной газовой постоянной, умноженной на три Кеплера (второй секториальная скорость точки постоянна первый планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце третий отношение кубов больших полуосей орбит к квадратам времен обращения для всех планет солнечной системы одинаково > Кирхгофа для теплового излучения для произвольных частоты и температуры отношение лучеиспускательной способности любого непрозрачного тела к его поглощательной способности одинаково Кнудсена для течения разряженного газа по цилиндрическому капилляру радиуса г и длины / характеризуется формулой  [c.233]

В 1969 г. Ок-Риджской лабораторией и фирмами Галф дженерал атомик и Бабкок энд Уилкокс под руководством Отделения реакторов и технологии КАЭ были выполнены расчетные проработки газоохлаждаемого реактора-размножителя, которые показали, что использование в таком реакторе разработанных для БН стержневых твэлов со стальными оболочками и окисным уран-плутониевым топливом позволяет получить более высокий коэффициент воспроизводства, однако объемная плотность теплового потока активной зоны оказывается меньшей, что существенно снижает преимущества реакторов ВГР. Переход в реакторах ВГР к более теплопроводному карбидному топливу и использование более тонких стальных покрытий и конструкции вентилируемых твэлов позволяет существенно увеличить объемную плотность теплового потока, что наряду с большим коэффициентом воспроизводства обеспечивает их решающее преимущество, по сравнению с реакторами ВН, в снижении почти вдвое времени удвоения ядерного топлива. В табл. 1.6 приведены результаты исследований влияния вида топлива на важнейшие характеристики реактора ВГР мощностью 1 млн. кВт с обычными стержневыми твэлами и температурой металлической оболочки 700° С.  [c.32]

Для сопоставления вариантов и выбора оптимального была проведена серия количественных расчетов на основе зависимостей AT/ATs и Ар1Арв высокотемпературного реактора при различной объемной плотности теплового потока qv- Параметры гелия давление — 5 МПа, температура на входе в активную зону — 300° С, средняя температура на выходе — 950° С, тепловая мощность реактора — 1000 МВт.  [c.100]

Сравнение вариантов бесканальной активной зоны с беспорядочной засыпкой и плотной тетраоктаэдрической укладкой шаровых твэлов показывает, что плотная упаковка, несмотря на увеличение объема твэлов и снижение объемного тепловыделения в них, ограничивает достижимое значение объемной плотности теплового потока в активной зоне из-за существеннобольшей относительной потери давления. По-видимому, это обстоятельство надо иметь в виду при конструировании бесканальной активной зоны с беспорядочной засыпкой шаровых, твэлов. Если в силу каких-либо причин произойдет уплотнение шаровой насадки и переукладка ее в упорядоченную, то это-вызовет значительное увеличение сопротивления контура при сохранении неизменной тепловой мощности реактора.  [c.105]

Для пересчета в единицы СИ приведены таблицы переводных множителей для единиц длины — табл. IX, для единиц времени, площади, объема — табл. X, для единиц массы, плотности, удельного веса, силы — табл. XI для единиц давления, работы, энергии, количества теплоты — табл. XII для единиц мощности, теплового потока, теплоемкости, энтропии, удельной теплоемкости и удельной энтропии — табл. XIII для единиц плотности теплового потока, коэффициентов теплообмена (теплоотдачи) и теплопередачи, коэффициентов теплопроводности, температуропроводности и температурного градиента — табл. XIV.  [c.12]

Радиационные характеристики смеси продуктов деления являются исходными параметрами для расчета защиты, тепло-съема и собственно ведения технологического процесса. Они зависят в основном от трех факторов удельной тепловой мощности реактора хю вт/г (или плотности потока нейтронов Ф нейтрон1 см -сек) , продолжительности кампании Г и выдержки Для процессов переработки облученного топлива основными радиационными характеристиками смеси продуктов деления, которые в первую очередь необходимо знать при проектировании защиты, являются удельные активности  [c.183]


Пример 1. Рассчитать толщину защиты из бетона rfi для детектора Pi (точка С на рис. 11.2) в помещении постоянного обслуживания П1 (монтажный зал), если заданная проектная мощность дозы Р=1,4 мр1ч. Источник представляет собой химический реактор И1, в котором растворена 1 т отработанного горючего (тв.злы АЭС) с удельной тепловой мощностью =35 Мвт/т после кампании Т=720 дней и выдержки /=360 дней. Плотность водного раствора продуктов деления р=1,15 zj xP. Полная высота цилиндрического источника Ло = 3,2 м, высота раствора в нем й=2,б м. объем раствора о=13,8 м , радиус / =1,3 м, толщина стальных стенок реактора 2 см, расстояние от поверхности раствора до детектора (2=2,6 м. Поверхностная (сорбированная) активность численно равна объемной активности Q .  [c.330]

Эксплуатация реакторов-размножителей на быстрых нейтронах сопряжена со значительными трудностями, связанными главным образом с исключительно высокой плотностью энерговыделения и с трудностью регулирования, возникающей в связи с тем, что регулирующие стержни слабо поглощают быстрые нейтроны. Высказывались мнения, что строительство промышленных энергетических установок на быстрых нейтронах вообще нереально. Сейчас, однако, доказано, что энергетика на быстрых нейтронах столь же реальна, как и на медленных. В США с 1962 г. эксплуатировался энергетический реактор на быстрых нейтронах Энрико Ферми с электрической мощностью 60 МВт. В te P первый экспериментальный реактор БР-2 на быстрых нейтронах был создан в 1956 г. в Обнинске. На Шевченковской АЭС с 1972 г. работает энергетический реактор на быстрых нейтронах БН-350. Его тепловая мощность 650 МВт, электрическая — до 120 МВт. Он используется для получения пресной воды из Каспийского моря и вырабатывает до 80000 тонн пресной воды в сутки. В Мелекесе работает реактор на быстрых нейтронах БОР-60 мощностью 60 МВт. На Белоярской АЭС сооружается реактор БН-бОО с электрической мощностью 600 МВт. Ведутся разработки быстрого реактора БН-1690, который в будущем должен стать основой серийных блоков АЭС. За рубежом работают два энергетических реактора на быстрых нейтронах, один в Англии, а другой — во Франции.  [c.588]

В настоящее время в химической технологии для обогрева аппаратов при температурах от 400 до 550 °С применяют теплогенераторы ВТ, работающие на соляном теплоносителе — сплаве СС-4. На одном из отечественных заводов обогрев технологических аппаратов парами ртути был заменен на обогрев сплавом СС-4. Для этой цели Тех-энергохимпром спроектировал теплогенератор ТЭХП-ВТ-1,45 змеевикового типа тепловой мощностью 1,45 МВт, состоящий из радиационной и конвективной частей и воздухоподогревателя. Температура сплава СС-4 на входе в теплогенератор 425 °С, на выходе из него 455 °С. Теплогенератор предназначен для работы на природном газе. Расход газа - 165,7 м /ч при коэффициенте избытка воздуха 1,27. Температура уходящих газов 327 °С, к. п. д. теплогенератора — 83,7 %. Средняя плотность теплового потока в радиационной части теплогенератора составляет 63,3 кВт/м , температура стенки змеевика радиационной части 515 °С. Тепловая мощность радиационной части теплогенератора 1,13 МВт, конвективной - 0,32 МВт. Трехгодичная эксплуатация двух таких теплогенераторов показала, что они надежны в работе, причем указанные выше их параметры незначительно отличаются от расчетных.  [c.293]

При независимой от процесса величине плотности теплового потока ( с = onst) имеет место скачкообразный переход пузырькового режима кипения в пленочный и обратно (рис. 13-5,6). Условие постоянства на поверхности характерно для электрического обогрева. Если подводимую мощность не уменьшить, то система перейдет в состояние, для которого характерно значительное повышение температуры стенки. Экспериментально момент перехода определяется по резкому повышению  [c.302]

Кризис теплообмена достигался медленным повышением электрической мощности на участке при постоянных расходе, давлении и температуре воды на входе. Нагрузка поднималась ступенями до 0,1% предшествующего значения мощности, поэтому установленные в опытах критические плотности тепловых потоков могли быть меньше действительных, но не более, чем на 0,1%. Для отключения нагрузки в момент начала кризиса была использована схема, основанная на измерении температуры наружной поверхности трубки. Датчиком, воспринимающим отклонение температуры от максимально заданной, служила термопара, которая приваривалась либо непосредственно к трубке контактной сваркой, либо к медному колечку толщиной 0,16 мм, которое через слой слюды толщиной 0,04 мм прижималось к трубке. В некоторых опытах на участке № 1 кризис фиксировался визуально, в остальных - термопары подключались к светолучевому осциллографу типа Н-700 или к электронному регулятору температуры типа ЭР-Т-52, который настраивался на срабатывание при температуре 500—550°С. Момент наступле-  [c.133]

Аналогичный результат был получен на подобной стержневой сборке, но оснащенной модернизированными интенсификаторами теплообмена, у которых отрезки скрученных лент устанавливались с зазором по отношению к твэлам. Этот интенсификатор оказался более эффективным и результаты по критической мощности получились выше, чем на сборке с первым типом интенсификатора. На рис. 8.9 представлены и экспериментальные данные, полученные при наличии модернизированных интенсифи-каторов, установленных на трехстержневой сборке с шагом 220 мм. Следует отметить, что на трехстержневой сборке с интенсификаторами во всех опытах с ростом массовой скорости критическая плотность теплового потока возрастала, а в аналогичных опытах на сборке без интенсифи-каторов она уменьшалась.  [c.154]

При использовании предложенного метода расчета предпочтительнее находить критическую мощность стержневой сборки, которая определяется при машинном счете по первому касанию кривой распределения тепловьщеления по длине канала с корреляцией (8.2). Расчет проводится при фиксированных параметрах теплоносителя на входе и при увеличении с определенным шагом мощности канала. Кроме критической мощности канала при этом определяются координата сечения кризиса, локальные паросод жание и плотность теплового потока.  [c.157]

Q — безразмерная плотность теплового потока р(11ХцТд) мощность, Вт количество тепла, Дж  [c.5]


Смотреть страницы где упоминается термин Плотность тепловой мощности : [c.111]    [c.131]    [c.8]    [c.94]    [c.106]    [c.42]    [c.50]    [c.256]    [c.215]    [c.304]    [c.6]    [c.146]    [c.86]    [c.86]    [c.86]   
Прикладная газовая динамика. Ч.2 (1991) -- [ c.185 ]



ПОИСК



Объемная плотность тепловой мощности

Плотность тепловой мощности притока тепл



© 2025 Mash-xxl.info Реклама на сайте