Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности процесса подземной коррозии

ОСОБЕННОСТИ ПРОЦЕССА ПОДЗЕМНОЙ КОРРОЗИИ  [c.183]

В первом случае внешний ток третьего электрода = О, но он может, особенно будучи протяженным, играть роль биполярного электрода независимо от наличия или отсутствия включения его во внешнюю цепь двух других электродов (рис. 202). На одном его конце идет при этом катодный, а на другом — анодный электродный процесс (например, коррозия подземных трубопроводов блуждающим постоянным током).  [c.299]

Такие вопросы теории и механизма электрохимической коррозии, как равновесные и стационарные электродные потенциалы, электрохимическая гетерогенность поверхности металла, кинетика катодного и анодного процесса, работа коррозионного элемента и пассивность рассмотрены в работах № 4—11. Особенности коррозии металлов в различных условиях службы, например кислотостойкость, подземная коррозия металлов, межкристаллитная и точечная коррозия сталей, коррозия сварных соединений, коррозионное растрескивание и усталость, иллюстрируются работами № 12—19. Современные методы коррозионных исследований даны в работе № 20, а также в работах № 5, 12, 14—19 при выполнении частных задач.  [c.51]


В третьем разделе излагаются средства защиты от подводной и подземной коррозии. Несмотря на то, что коррозионные процессы в почве имеют ряд специфических особенностей, методы защиты, однако, и для подземных и для подводных сооружений в большинстве случаев однотипны.  [c.6]

Теория коррозии блуждающими токами является наименее разработанной областью коррозионной науки. Объясняется это весьма большой сложностью различных процессов, происходящих в системе источник блуждающих токов — земля — подземное металлическое сооружение — источник блуждающих токов, а также взаимообусловленностью этих процессов (явлений), возникающих в разных частях этой системы. Большие трудности связаны с изучением особенностей протекания электрохимических процессов на границе почва — металл при протекании переменных по знаку, амплитуде, плотности и частоте блуждающих токов. Отсюда и сложность теоретического анализа этой системы. Так, теоретические исследования по выявлению распределения токов и потенциалов в указанной системе с использованием ЭВМ весьма громоздки и не всегда дают достоверные результаты, что резко ограничивает их практическое применение. Для получения достоверных данных необходимо использовать современные методы как математических, так и электротехнических, электрохимических, геофизических и ряда других специальных технических наук.  [c.46]

Исходя из уже имеющихся наблюдений, можно с полным правом считать, что процессы коррозии металлов в почве имеют, в общем, электрохимическую природу и к ним применимы основные выводы электрохимической теории коррозии, построенной применительно к жидким электролитам. Однако электрохимическая коррозия металлов в подземных условиях имеет ряд характерных отличий, определяемых своеобразностью электрохимических процессов в сложном почвенном электролите , особенности которого определяются микропористой структурой почвы.  [c.355]

В подавляющем большинстве случаев наружная коррозия имеет характер отдельных, сравнительно небольших по площади очагов при наличии на остальных участках сплошной равномерной и сравнительно небольшой коррозии. В отсутствие опасных потенциалов блуждающих токов характер мест повреждений позволяет считать, что интенсивная местная коррозия незащищённой покрытиями поверхности трубы происходит вследствие периодически частого доступа влаги (точнее кислорода в ней). Этот процесс имеет место как в беска-нальных прокладках, так и в канальных при затоплении их водой и особенно при заносе грязью. Трубопровод, полностью погружённый в воду, подвергается более медленной коррозии, нежели находящийся во влажной тепловой изоляции. Переменный нагрев теплопровода приводит к перемещению влаги в слое изоляции, увеличению доступа кислорода и, следовательно, интенсификации процесса коррозии. Повышение температуры теплоносителя от 20 до 75 °С приводит к увеличению скорости коррозии стали в контакте с минеральной ватой в 4-5 раз. С дальнейшем ростом температуры теплоносителя до 100 °С скорость коррозии резко снижается, что связано с подсушиванием контактного слоя тепловой изоляции и деаэрацией воды. Таким образом, наиболее желательным для замедления процессов наружной коррозии подземных теплопроводов был бы тепловой режим работы сетей с минимальной температурой в 95-100 °С [8].  [c.30]


Специалистами ВНИИГАЗа и ВНИИнефтемаша установлено, что основным повреждением скважинного оборудования АГКМ является негерметичность затрубного пространства и, как следствие, наличие в нем газовых шапок. Негерметичность затрубного пространства может быть вызвана негерметичностью лифтовой колонны, элементов подземного оборудования или уплотнений трубных и колонных головок. В свою очередь, негерметичность последних в значительной степени связана с применением уплотняющих элементов из эластомеров, которые в процессе эксплуатации теряют свои пластические свойства. Конструктивные особенности автоклавных уплотнений подвески насосно-компрессорных труб способствуют появлению перетоков через уплотнения. Наличие негерметичности вызывает попадание пластового газа в зоны технологического оборудования, где контакт металла с сероводородсодержащей средой не предусмотрен проектной схемой. Это приводит к значительному ужесточению условий эксплуатации элементов газопромыслового оборудования и, тем самым, к повышению риска его выхода из строя. Одним из последствий наличия негерметичности затрубного пространства и уплотнений колонных и трубных головок является неработоспособность проектной системы ингибиторной защиты металла от коррозии.  [c.173]

Тепловые сети современных промышленных предприятий и городов представляют собой сложные инженерные сооружения, имеющие разветвленную цепь надземных и подземных трубопроводов в основном канальной прокладки. Они являются составной частью системы централизованного или местного теплоснабжения и предназначены для транспорта тепловой энергии от источников тепла к потребителям. В качестве теплоносителя в тепловых сетях используется вода или водяной пар. В РФ для централизованного теплоснабжения (особенно для коммунально-бытового) температура теплоносителя в большинстве случаев превышает 100° С (до 150° С), что в основном и определяет особенности конструкции теплопроводов. В отличие от других ( холодных ) протяженных и сложноразветвленных подземных металлических сооружений теплопроводы в процессе эксплуатации имеют значительные осевые (линейные) перемеш,ения вследствие термического удлинения стали. Температурные колебания в большом диапазоне вызывают знакопеременную и повторно-статическую деформацию металла, что, безусловно, способствует снижению коррозионномеханической прочности и долговечности трубопроводов, в первую очередь за счет уменьшения срока службы изоляционных покрытий и проявления механо-химической коррозии и требует применения специальных конструкций для компенсации тепловых перемеш,ений и снятия механических напряжений в металле трубы.  [c.88]

Магистральные, технологические и промысловые газонефтепроводы представляют собой сложные инженерные конструкции, проложенные во всех регионах России и эксплуатируемые в разнообразнейших природно-климатических условиях - от Крайнего Севера, Западной Сибири до средней полосы и пустынных южных районов. Подземная, наземная и надземная прокладки трубопроводов, подводные переходы, различные виды электрохимзащиты от коррозии, особенности технологии строительства и конструктивных решений создают широкий вероятностный спектр параметров прочности и долговечности различных участков трубопроводов. Это учитывается на стадиях конструкторского проектирования и эксплуатации систем трубопроводов. Анализ надежности и безопасности участков обеспечивает нахождение оптимальных конструктивных решений, рациональный выбор трассы, объемов и сроков диагностики их технического состояния в процессе строительства и эксплуатации, капитального ремонта и реконструкции, позволяет подготовить рекомендации для персонала по их действиям в потенциальных нештатных ситуациях. Такой анализ способствует уменьшению потерь транспортируемого продукта, снижению технического обслуживания, индивидуального риска для персонала и населения и т.п.  [c.525]

В практике чаще всего встречаются с примерами разрушений металлических конструкций вследствие электрохимической коррозии. Этот вид коррозии возникает в растворах электролитов, причем ему сопутствуют протекающие на поверхности металла электрохимические процессы окислительный — растворение металла — и восстановительный — электрохимическое восстановление компонентов среды. На скорость электрохимической коррозии влияют особенности как самого металла (вид, структура, неоднородности, наличие пленок и покрытий), так и электролитической среды (состав, концентрация, температура, кислотность и т. д.). Влияют также условия эксйлуатации металлической конструкции. Видами электрохимической коррозии являются атмосферная, подземная, морская, биологическая, коррозия под действием блуждающих токов и др.  [c.12]


В большинстве случаев коррозия подземных сооружений протекает с преимушественным катодным контролем. Наиболее характерным катодным процессом в грунтовых условиях является кислородная деполяризация с преобладанием торможения транспорта кислорода к металлу. В сильно кислых грунтах может происходить водородная деполяризация. Не исключена также возможность электрохимического восстановления продуктов жизнедеятельности различных грунтовых микроорганизмов. Особенно вероятно в грунтовых условиях возникновение коррозионных пар неравномерной аэрации.  [c.110]

Защита трубопроводов от коррозии может осуществляться катодной поляризацией, изолирующими покрытиями, а также одновременно изолирующими покрытиями и катодной поляризацией. На промышленных предприятиях защита изолирующими покрытиями не может рассматриваться как самостоятельное мероприятие. Это связано с тем, что для основных подземных трубопроводов предприятий (трубопроводов технического питьевого и оборотных циклов) поставляются трубы с низким качеством изолирующих покровов на битумной основе, когда общая площадь дефектов в изоляции приближается к 10% площади наружной поверхности труб. При таком состоянии изолирующих покровов допустимо предположение о том, что процесс коррозии изолированных труб мало отличается от процесса коррозии труб без изолирующих покровов. Имеющиеся различия быстро стираются со временем, особенно при использовании катодной поляризации, когда действует электроосмос, насьпцающий влагой слой грунта, прилегающий к поверхности металла.  [c.113]

Причины возникновения коррозии металлов весьма разнообразны. В сбответствии с особенностями протекания процессов коррозии и причин, вызывающих ее, различают коррозию атмосферную, газовую, подземную, структурную, контактную, коррозию под напряжением, коррозию внешним (током и т, п. По характеру протекания процесса разрушения металла все многообразие видов коррозии можно отнести к двум основным типам — химической и электрохимической коррозии.  [c.26]


Смотреть страницы где упоминается термин Особенности процесса подземной коррозии : [c.432]    [c.454]   
Смотреть главы в:

Коррозия химической аппаратуры  -> Особенности процесса подземной коррозии



ПОИСК



2.61 — Особенности процесса

Особенности коррозии

Подземная коррозия

Процессы коррозии



© 2025 Mash-xxl.info Реклама на сайте